US 20090204964A1

a2y Patent Application Publication (10 Pub. No.: US 2009/0204964 A1l

a9 United States

Foley et al.

(43) Pub. Date: Aug. 13,2009

(54) DISTRIBUTED TRUSTED VIRTUALIZATION
PLATFORM

Peter F. Foley, Los Altos Hills, CA
(US): Rajesh Gupta, San Diego.
CA (US): Rao Cherukuri, Los
Altos Hills, CA (US): Jithendra
Bethur, Newark, CA (US); Brent
Haines. Cupertino. CA (US)

(76) Inventors:

Correspondence Address:

FENWICK & WEST LLP

SILICON VALLEY CENTER, 801 CALIFORNIA
STREET

MOUNTAIN VIEW, CA 94041 (US)

(21) Appl. No.: 12/287,833

(22) Filed: Oct. 14, 2008

Related U.S. Application Data

(60) Provisional application No. 60/979.728, filed on Oct.
12, 2007, provisional application No. 60/999,056,
filed on Oct. 15, 2007.

Publication Classification

(51) Int.Cl

GO6F 9/455 (2006.01)
GO6F 9/00 (2006.01)
GO6F 21/00 (2006.01)
GO6F 15/16 (2006.01)
HO4L 908 (2006.01)
(52) US.CL ..o T18/1: 713/2: 726/1; 709/202:
380/279
(57) ABSTRACT

A platform architecture shifts the networked computing para-
digm from PC+Network to a system using trusted mobile
internet end-point (MIEP) devices and cooperative agents
hosted on a trusted server. The MIEP device can participate in
data flows, arbitrate authentication. and/or participate in
implementing security mechanisms, all within the context of
assured end-to-end security. The MIEP architecture improves
platform-level capabilities by suitably (and even dynami-
cally) partitioning what is done at the MIEP nodes, the net-
work, and the server based infrastructure for delivering ser-
vices.,

VM1 VM2
Guest 0S-2 Guest 0S-1 torage
.[_N_eb_S_er!icEs 5 / épEIilcationeJ Web Services / ApplicationsT]
' .
Crypto Services: PHCS#11 Crypto Servicesi PKCS#11 Sealed Data

1 R

vTPM driver! < . vTPM driver

- ey oy

Gy

TPM vi

Iizatio; manager

Trusted Hypervisor

Kernel Loader]

TPM naW driver

Boot Manager TCG code | TPMAPI
Boot firmware
(RedBoot) | TCG code

| .
1TPM if

CRTM

CPU Init code

1’C
i/f

B & £y-V

—

US 2009/0204964 Al

DISTRIBUTED TRUSTED VIRTUALIZATION
PLATFORM

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims priority under 35 U.S.C. §
119(e) to U.S. Provisional Patent Application Ser. No.
60/979,728, “Distributed Trusted Virtualization Platform,”
filed Oct. 12, 2007 by Peter F. Foley et al. and to U.S. Provi-
sional Patent Application Ser. No. 60/999,056, “Distributed
Trusted Virtualization Platform,” filed Oct. 15, 2007 by Peter
F. Foley et al. The subject matter of all of the foregoing is
incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates generally to virtualization of
computing resources and security and trust in an environment
of such virtualization.

[0004] 2. Description of the Related Art

[0005] The inexorable trend towards workforce mobility
and the requirement for web access while mobile is driving
significant new technology development and businesses in
devices and infrastructure associated with mobile web access.
Of significant value is the reliable access to, and utilization of,
computing services and data delivered over the web, thus
making the wide-area network effectively both the computing
medium as well as a heterogeneous collection of databases.
All of these capabilities are delivered through a diverse group
of “web services.” Technically, this poses a number of chal-
lenges related to communications, security, trust, negotia-
tions and monitoring among diverse devices, agents, and
business processes. All of this currently takes place in an
environment where neither the device, the communications
infrastructure, nor the web servers can be trusted, and where
the communications link is highly variable in quality.

[0006] Inordertoimprove trustin the mobile device, and to
create an infrastructure upon which device capabilities can be
augmented or place shifted in a trustworthy manner via vir-
tualization, there is a need to establish a foundation of secu-
rity. Consider first a typical software implementation of exist-
ing mobile devices, as shown conceptually in FIG. 1. In this
implementation, the software stack is oblivious of both the
capabilities and requirements posed by the wide-area net-
working, delegating these issues instead principally to the
applications level. Consequently, the critical actions at startup
happen in a manner that treats the system as a monolithic local
entity consisting of local peripherals and interfaces: the sys-
tem boots from PROM, the kernel is loaded, followed by the
OS. Applications are then layered and run “on top of”” (hosted
by) the OS in the same system address space. It is therefore
easy for applications to observe or (maliciously) affect other
applications running at the same time. Security provisions are
added as a post hoc modification by providing differentiation
among access capabilities: e.g., user versus kernel mode.
Since the semantic information for such differentiation exists
only at higher layers of the software stack, the underlying
hardware memory system can easily be manipulated by an
application to foil such differentiated privileges, for instance,
by strategically placing data/code in a uniformly addressed
memory model.

[0007] Consequently, even though applications are gener-
ally executed in the “user” mode, in the current architecture

Aug. 13,2009

that intention can be subverted and it is possible for applica-
tions to run code at a higher priority level in kernel mode, or
for viruses that infect an application to access kernel mode
privileges. Viruses have used techniques such as introducing
kernel mode VxDs or using tricks such as the call gate mecha-
nism to run code at higher privilege levels.

[0008] Modern anti-malware software is also engineered as
an application program or installed as a post hoc modification
to a running operating environment. This means, to be suc-
cessful, such a software must win the race with a malicious
application program in terms of time when it is installed, in
the observability of important system events and actions and
the level of access storage and state information. Thus, if a
virus “rootkits” the system by executing beneath the OS or
even the kernel, it can be difficult for anti-malware software to
detect it as the malware has control of system resources
generally employed by the anti-malware to detect it. A root-
kitted system is shown conceptually in FIG. 2.

[0009] Furthermore, web services provide a means to
expose and use programming interfaces on wide area net-
works, potentially with many mobile devices. By design,
these interfaces are lightweight to enable portability across
platforms with diverse computational capabilities. For
example, HT'TP is a session-free, non-transactional protocol
that was originally designed for transporting documents.
Later, with the advent of styling innovations and its separation
from the data content, it also provided a simple, usable Ul for
running applications over the web. HTTP works well when
the client platform can provide the computing power and
form-factor necessary to render the Ul in a reliable and pre-
dictable way.

[0010] The ubiquity of web servers, server software, sup-
porting programming languages and libraries, and supporting
technology such as XML has made HTTP a good protocol for
distributed applications. In essence, the use of web technolo-
gies has evolved from a user-to-computer technology, to one
that supports (and is widely adopted for) computer-to-com-
puter interactions, essentially using HTTP as a transport for
Remote Procedure Calls (RPC) between distinct (and often
geographically separate) components of an application.
[0011] From a functional standpoint, the evolutionary
changes to web services had primarily been focused around
the client. Clients have gone through the following transi-
tions:

[0012] Client computers (desktops and laptops) running
browsers that simply render HIML as served by the
service architecture.

[0013] Server computers running software that uses Web
Services as an integration mechanism; effectively trans-
ferring data and control as a part of a larger application.

[0014] Client computers handling more (or all) complex
(thick-client) rendering and formatting logic for unfor-
matted XML data retrieved using HTTP from the Web
Server using technologies like AJAX.

[0015] Mobile devices accessing the Web Services and
Sites (such as online-banking, maps and navigation,
local search, etc) that have become a common part of life
for consumers.

[0016] While these changes have had an impact on the
format of data served up by Web Services, the architectural
drivers for Web Services and Web Server Software have
remained the same. These generally are

US 2009/0204964 Al

[0017] Reliability—Web Services preferably should be
up all the time. The consumer expectation is that these
services never go down for any reason.

[0018] Transportability—Web Services preferably
should be accessible from any Endpoint the user
employs with (wherever possible) no change in func-
tional experience.

[0019] Scalability—Web Services preferably should be
able to handle simultaneous requests from many (some-
times millions of) clients in a quick and responsive way.

[0020] FIG. 3 illustrates the most common approach for
meeting the design drivers for building Web Services. The
major aspects are described below:

[0021] Redundancy—FEach server is redundant and can
handle requests that are initiated from any supported
client. This approach typically includes geographic
redundancy as depicted with the inclusion of Service
Site 1 and Service Site 2. This provides for scalability as
well as reliability.

[0022] Tiered Distribution—Each aspect of the Web Ser-
vice deployment is handled in a dedicated tier, enabling
it to be scaled according to demand and suitability to
task. For example, there are generally more Web Servers
in a large scale Web Service deployment because a) they
handle SSL encryption and requisite key generation and
b) they are exposed to the Internet and most vulnerable
to malicious attacks, including denial of service attacks.

[0023] Load Balancing—The use of redundancy should
be transparent to the client. This essentially means that a
single internet target must be presented for a connection
that can then be redirected to the next available server.
Balancing across web servers usually requires dedicated
load-balancing hardware. Balancing across other tiers is
generally built into the software platform upon which
they are implemented. Balancing across sites is gener-
ally done via a simple DNS round-robin algorithm or
simple correlation for either locale of the trunk IP
assignment.

[0024] Replication—Most current Web Service archi-
tectures provide complete redundancy for all aspects of
the system, including the data services tier. There is no
single point of failure. This requires that dedicated con-
nections are set up and utilized to replicate persistent
information between servers.

[0025] This architecture provides widely available, large-
scale Web Services that can be accessed by any standard
Web-based client. It can provide for information and service
requests from a large number of clients anywhere in the
world. This standard architecture does not, however, address
the security and privacy requirements/challenges in current
mobile devices, particularly given the current trends in
mobile device usage. These requirements/challenges include:

Aug. 13,2009

[0029]
[0030]
ment
[0031] Thus, there is a need for innovations in mobile
devices and/or the supporting infrastructure to address some
or all of these needs.

Inadequate Trust in Web Services
Lack of a Trustworthy Agent Hosting Environ-

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG.1 (priorart): Typical Software Stack in Current
Mobile Devices

[0033] FIG. 2 (prior art): Rootkitted System Software
Block Diagram

[0034] FIG. 3 (prior art): Existing Web Server Software
Architectures

[0035] FIG. 4 (prior art): Trusted Platform Module (TPM)
Block Diagram

[0036] FIG. 5: Trusted Boot via Transitive Trust Mecha-
nism

[0037] FIG. 6: Mobile Device Software Architecture Block
Diagram

[0038] FIG. 7: Alternative Mobile Device Software Archi-
tecture

[0039] FIG. 8: Multi-Radio Virtualized Broadband Pipe
[0040] FIG. 9: MTM Embodiment Block Diagram

[0041] FIG. 10: MTM Mediated Trusted Boot Block Dia-
gram

[0042] FIG. 11: Secure Cryptographic Link between MTM
and Server

[0043] FIG. 12: Visual Attestation: Secure Login Example

in Multi-Window Environment
[0044] FIG. 13: Visual Attestation: Trust Bar Example in
Full Screen Mode

[0045] FIG. 14: Virtual Services Architecture

[0046] FIG. 15: Ideal Trusted Agent Server Implementa-
tion

[0047] FIG. 16: Utilizing the MTM to Provide Trust to an

Untrusted Platform

[0048] FIG. 17: OS Hosted Virtualized Service Server
Implementation

[0049] FIG. 18: TVMM Based Agent Master

[0050] FIG. 19: P2P Agent Communications Architec-
ture—Physical View

[0051] FIG. 20: P2P Agent Communications Architec-
ture—Logical View

[0052] FIG. 21: Example MIEP/Trusted Server Relation-
ship

[0053] FIG. 22: AIK Certificate Generation Protocol
Example

[0054] FIG. 23: Attestation Protocol Diagram Example

[0026] Inadequate mobile Endpoint device security DETAILED DESCRIPTION OF THE PREFERRED
[0027] Inadequate mobile Endpoint device authentica- EMBODIMENTS
tion
[0028] Inadequate Anonymity/Privacy on the Web [0055]
TABLE of Contents
I. Foundational Elements: Platform Security 10
I.A. The Mobile Internet End-Point Device (MIEP) as an 10
Integral Component of a Mobility Focused System
I.B. Trusted Computing Group (TCG) Secure Architecture Model 12

I.C. Transitive Trust and Trusted Boot 15

US 2009/0204964 Al

TABLE of Contents-continued

Aug. 13,2009

1.D. Virtual Machine Monitor (VMM)
LE. Trusted Virtual Machine Monitor (TVMM)
II. The Mobile Device Software Architecture
III. Communications Channel Virtualization
IV. Mobile Trust Module (MTM)
IV.A. Physical Implementations
IV.B. Achieving Trusted Boot from the MTM
IV.C. MTM Based Software Environment
IV.D. User Authentication in the MTM/HMD Combination
IV.E. MTM Status Indicators and Control Buttons
IV.E. MTM as HMD Malware Scanning Locus
V. The Server in Support of the MIEP Model
V.A. Ideal Server Supports Protected Capabilities, Roots of Trust,
and a Trusted Boot Process.
V.B. VMs on the Server Support VMs on the MIEP
V.C. Spawned Server VMs Conform to an API Supporting MIEP Agents
V.D. Server VM Attestation to an MIEP VM
V.E. The MIEP May Specify Capabilities of Spawned VMs on the Server
V.F. Server VMs Can Be Shared

V.G. A TVMM Implementation Inherently has Minimal Trusted Path Issues

V,H. Trust Level Indication UI - Visual Attestation
V.I. Global State Cache
V1. Software Architecture of the Agent Services
VLA. Virtual Services
VI.B. Complete Virtualization of Services
VI.C. OS Hosted Virtualization of Services
VI.D. TVMM Based Agent Master
Description of Agents and Agent Operation
VILA. Web Browsing Agent
VILB. Web Content Filtering Agent
VIL.C. Malware Scanning Agent
VILD. Behavioral Monitoring Agent
VILE. P2P Agent
VILF. Data Compression and Transcoding Agent
VIL.G Communications Channel Virtualization Agent
VILH. Data Storage Agent
VILL Application ViewPort Agent
VILJ. MIEP Global State Cache Management Agent
VILK. Transaction Management Agents
VILL. Web Identity Broker Agent
VIIIL. Aspects of System Operation
VIILA. Mutual Attestation
VIILB. Platform Independence - Ability to Migrate Virtual Machines
VIILC. Platform Use of Meta-Data
VIIL.D. Example Uses of the MIEP Trust Capabilities
VIILE. Dynamic Attestation

VIL

=

1. Foundational Elements: Platform Security

I.A. The Mobile Internet End-Point Device (MIEP) as an
Integral Component of a Mobility Focused System

[0056] The following disclosure describes, in part, a plat-
form architecture that shifts the networked computing para-
digm from PC+Network to a system using trusted Mobile
Internet End-Point (MIEP) devices and cooperative Agents
hosted on a Trusted Server. The MIEP device can participate
in data flows, arbitrate authentication, and/or participate in
implementing security mechanisms, all within the context of
assured end-to-end security. The MIEP architecture improves
platform-level capabilities by suitably (and even dynami-
cally) partitioning what is done at the MIEP nodes, the net-
work, and the server based infrastructure for delivering ser-
vices.

[0057] The MIEP component of the mobility platform pre-
sented here is not a classic thin client. A classic enterprise thin
client typically sits behind a “walled garden”—a corporate
firewall on a dedicated high bandwidth high availability eth-
ernet network. This facilitates booting over the network and
significant compute offloading to corporate servers. Security

tasks can also be offloaded to corporate servers and the non-
mobile nature of these devices and their location behind a
corporate firewall increases the feasibility of deploying and
enforcing policies which minimize security vulnerabilities,
including physical I/O modalities on the thin client devices.
Trust issues are also mitigated with respect to the communi-
cations network and the server, since there is implied trust in
the corporate server and network integrity.

[0058] In contrast, the MIEP, because it is mobile, may not
sit behind a corporate firewall, and does not enjoy a dedicated
reliable high bandwidth connection to any network. The
MIEP device typically also operates on a limited energy bud-
get (e.g., batteries) and under stringent form factor and bud-
getary constraints. These factors significantly alter system
design optimization criteria. Optimizing the design of the
MIEP requires an integrated systems level perspective as a
systems optimization problem encompassing the device
itself, unreliable wireless and wireline communications links,
and supporting server(s) available over the web. To
adequately address the requirements of an MIEP based com-
puting model, it is highly beneficial that trust and security be
afoundational element in the design of the overall system.

US 2009/0204964 Al

[0059] The example system described below provides a
framework for distributed capabilities in a Service Frame-
work that leverages existing OS (operating system) and appli-
cation software on a new trust/security/virtualization model
infrastructure. This is advantageous to carriers who, for
example, want to be able to provide unique differentiated
services instead of commoditized “dumb pipes.” In the fol-
lowing, we describe the approach using an example based on
the context of current practice and emerging standards,
although the invention is not limited to this context or this
example.

1.B. Trusted Computing Group (TCG) Secure Architecture
Model

[0060] To respond to the emerging need for security in our
computing infrastructure, the industry has sponsored the
Trusted Computing Group (TCG) that seeks to define hard-
ware and software requirements for security, and to drive
adoption of standards to achieve secure computing platforms.
TCG is also instrumental in defining a vocabulary for describ-
ing important concepts related to security and trust in com-
puting. We find this vocabulary useful in describing our inno-
vations and their embodiments. Where possible, we use
vocabulary that is compliant with TCG recommendations or
standards. The following examples are based on the TCG
model and the TCG vocabulary but the invention is not lim-
ited to these specific examples or to the TCG model or to the
TCG vocabulary. The TCG model is chosen as an example for
convenience and for didactic purposes.
[0061] In order to provide a far more secure system than
what is currently available, including protection against root-
kits, a set of additional capabilities are needed by the mobile
device. In the secure hardware platform architecture pro-
posed by the TCG, these capabilities include the following:
[0062] 1) Ability to define protected capabilities as a set
of commands, which alone can access shielded locations

[0063] 2) Integrity measurement and storage
[0064] 3) Integrity reporting
[0065] 1.B.1 Trusted Platform Module (TPM)

[0066] One implementation of these protected capabilities
and shielded-locations used to report integrity measurements
is to locate them on the mobile device motherboard in a
hardware based tamper-resistant module, a Hardware Root of
Trust (HROT) called the Trusted Platform Module (TPM). In
the TCG implementation, the TPM incorporates a number of
tamper-resistant resources, including:
[0067] 1) non-volatile memory for key, platform con-
figuration, and other data storage
[0068] 2) cryptographic function/compute capability of
functions such as AES (symmetric encryption), SHA-1
(secure hash), and asymmetric key pair generation

[0069]
[0070]

[0071] A block diagram of an example TPM is shown in
FIG. 4. A more complete description of the TCG implemen-
tation of a TPM can be found at the Trusted Computing Group
(TCG) website. Some of the manufacturers of TCG compli-
ant TPMs include Atmel, ST Microelectronics, and Infineon.
A datasheet for the Atmel V1.2 compliant TPM can be found
at: http://www.atmel.com/dyn/resources/prod_documents/
5132s.pdf, for example.

3) random number generation
4) secure clock (to prevent replay attacks, etc)

Aug. 13,2009

[0072] Note that the HROT need not be instantiated as a
standalone hardware module, such as the TPM, but that the set
of protected resources may also be realized in the core CPU
chipset, or in the CPU itself.

[0073] 1.B.2 Integrity Measurement and Reporting

[0074] Integrity measurement is the process of obtaining
metrics of platform characteristics that affect the integrity
(trustworthiness) of a platform; storing those metrics; and
storing digests of those metrics in the TPM. Integrity report-
ing is the process of attesting to the contents of integrity
storage.

[0075] In this example embodiment, the system state is
stored as measurement digests in the TPM in a group of
20-byte registers called Platform Configuration Registers
(PCRs). The values of these registers are formed by “extend-
ing” (typically exclusively ORing) the existing value by a new
value, and then hashing (using the NIST standard hash func-
tion SHA-1) that extension to obtain a new digest and storing
the 20-byte result back in the PCR. This mechanism creates a
“running history/log” of all load events or system modifica-
tions that cannot be recreated out of order—the so called
“ratcheting” feature. This has great value in the platform’s
ability to attest to its state (and how it got there). The digest
mechanism also allows a single PCR register to record essen-
tially an unlimited number of measurement events.

[0076] 1.B.2 TCG Roots of Trust

[0077] InTCG systems, Roots of Trust are components that
must be trusted as misbehavior may not be detected. There are
three fundamental Roots of Trust in the TCG model:

[0078] 1) Root of Trust for Measurement (RTM)
[0079] 2) Root of Trust for Storage (RTS)
[0080] 3) Root of Trust for Reporting (RTR)

[0081] In one embodiment, the RTM includes the initial

BIOS boot code (located in protected non-volatile Flash
Memory on the motherboard) executed on the main host
processor—an ARM or x86 CPU in this particular example.
The actual measurement code block resident in secure non-
volatile memory is designated the Core Root of Trust for
Measurement (CRTM), following the TCG nomenclature.
The RTS and the RTR are both located in the TPM.

1.C. Transitive Trust and Trusted Boot

[0082] Transitive trust, or “inductive trust” as it is also
known, is the process of securely “bootstrapping” a system,
one software layer at a time, where each layer, before loading
the next layer, measures the code to be loaded and, using the
resources of the TPM, checks the measurement against a
value held in secure storage (in the TPM in this example). An
important requirement of the process is that the relationships
between the components be acyclic, e.g., that the boot
sequence can be described using a Directed Acyclic Graph
(DAG).

[0083] Using this methodology, a trusted boot process
starting at the BIOS, and proceeding up through OS or appli-
cation code level can be achieved. FIG. 5 diagrams an
example trusted boot process. In FIG. 5, the process starts
with Power On or a hard Reset (1), the CRTM block is read
out of BIOS Flash and executed by the CPU. This CRTM
block measures (hashes) the next code block (the Boot Code)
(3), and retrieves from the Stored Measurement Log(SML)
(4) all previous measurements that contributed to the relevant
digest value (stored in a PCR in the TPM) and passes the new
measurement value along with the data retrieved from the
SML to the TPM (5). The TPM recreates the digest from the

US 2009/0204964 Al

values obtained from the SML and if it matches that in the
PCR, and the new code block measurement matches the
expect value, the PCR is extended with the new measurement
value (6). The affirmative validation result is provided to the
CPU (7), and the measured value is stored in the SML (8) and
then the Boot Code just verified is loaded and run (9). This
process continues transitively “on up the chain” until the OS
and/or application is loaded and run.

1.D. Virtual Machine Monitor (VMM)

[0084] Inaddition to the use of an HROT, such as the TPM,
and the implementation of a trusted boot process, our
approach to platform security also takes advantage of virtu-
alization methods, for it is when virtualization is tied to a
HROT and integrated into a trusted boot and measurement
process that virtualization becomes truly powerful from an
isolation, provisioning, and flexibility standpoint We discuss
the process of virtualization before as it relates to security
before describing examples that combine TPM and VM.
[0085] Conventionally, a Virtual Machine Monitor (or
Hypervisor) is a virtualization technique to abstract CPU
resources that enable multiple operating systems to run
simultaneously on the same host processor. There are several
types of VMMs:

[0086] 1) Those that run directly on the hardware such
that any “guest OS” or other applications runs “on top
of” the VMM. This is commonly referred to as a Type-1
or “on the metal” Hypervisor.

[0087] 2) Those that run within an operating system
allowing a “guest OS” or other application to run
“above” the host OS. This is commonly referred to as a
Type-2 or native OS hosted Hypervisor.

[0088] The former approach is generally more secure and
provides better performance. It is in fact very difficult to
provide strong security guarantees using a Type-2 Hypervi-
sor. It is used in our example embodiment to:

[0089] 1) Provide the flexibility of running multiple
operating systems and/or applications (such as browsers
not needing a host OS) directly on the mobile device.

[0090] 2) Provide multiple independent security
domains (in the form of VMs with different security
status) on the mobile device.

[0091] 3) Provide a uniform target environment for
application software development.

[0092] 4) Provide a “portable” execution environment
that can be place shifted, particularly across unreliable
broadband wireless links.

[0093] Virtual Machine Monitors are a good place to instru-
ment the system for behavioral monitoring purposes as all
applications go through the VMM to access hardware
resources. The embodiment of the VMM utilized in the fol-
lowing examples is a so-called “paravirtualized” VMM (but
the invention is not limited to this type of VMM) in which
most code runs natively on the CPU. While this VMM
approach offers high performance with minimum size and
minimal CPU overhead (as low as 2-3%)), it typically requires
that some of the low level kernel drivers of the hosted OS be
“ported” to the VMM by replacing kernel calls to drivers that
modify state the VMM monitors and protects with “hyper-
calls” to the VMM.

L.E. Trusted Virtual Machine Monitor (TVMM)

[0094] One weakness ofa VMM from a security standpoint
is that it can be still subverted by rootkit malware such as

Aug. 13,2009

Virtual Machine Based Rootkits (VMBRs) which can be
used, for example, to establish BOTnets for purposes of
SPAM generation, Denial of Service (DOS) attacks, or online
fraud schemes. To combat this, a VMM can leverage the
protected capabilities rooted in a TPM, thus creating a
Trusted VMM (TVMM-—also known as a Trusted Hypervi-
sor). The TVMM enjoys the security benefits of the TCG
platform (including the Trusted Boot process) along with
other improvements, including:

[0095] 1) Providing applications with an execution envi-
ronment of a separate dedicated tamper-resistant hard-
ware platform while retaining the ability to run side-by-
side with normal (perhaps untrusted) applications.

[0096] The ability to create “closed box™ Virtual Machines
(VMs) that can cryptographically identify the software they
run and securely and reliably attest their state to remote par-
ties—a capability we call “compartmented attestation”—that
enables the creation of virtual trusted islands on the mobile
device.

[0097] Animportant advantage of VMs is that it is far easier
to treat them as static images (of binary representation), a
static OS that can be hashed for the purposes of transitive trust
and storage of VM state in a PCR digest—which ultimately
allows attestation of that VM image. This is in contrast to
typical OS implementations that incorporate dynamic com-
ponents that can be linked/loaded/unloaded in real time.
[0098] This static, or “closed box” capability of a VM
hosted OS is an important capability as it allows DRM and
other transactions to occur on a VM to web based server or
Peer-to-Peer (P2P) basis, and it fosters the ability of remote
parties to securely and reliably provision the capabilities of
VMs hosted on the mobile device.

[0099] 2) The ability of “closed box” VMs to establish
trusted paths between users and applications. In current
VM implementations, there usually is no way for a run-
ning application hosted by a VM to know whether its
inputs are coming from an authenticated human user or
from a malicious program.

[0100] 3) The ability for the mobile device to host a
variety of Operating Systems that are optimalfor the
hosted application. Operating systems tailored to an
application can be smaller and simpler than general pur-
pose OSes. Further, an OS tailored to an application can
provide the optimal environment for that application
from an energy, functionality, and security requirement
standpoint.

[0101] 4) VMs are an ideal unit of granularity upon
which to apply policies or otherwise provision a given
computing environment. The ability to remotely and
securely provision any given VM provides powerful
tools for IT management of MIEPs.

I1. The Mobile Device Software Architecture

[0102] The block diagram of FIG. 6 shows one example of
the software architecture of the MIEP. As can be seen in the
block diagram, this particular implementation of the software
architecture includes the following primary layers:

[0103] 1. A Boot layer at the lowest level that directly
interfaces with the TPM and makes its capabilities avail -
able to the upper layers in a secure manner.

[0104] 2. The TVMM/Trusted Hypervisor.

[0105] 3. The VMs hosted by the TVMM, which in turn
may host applications.

US 2009/0204964 Al

[0106] Each VM can host an Operating System (or other
applications). Operating Systems in turn typically host Appli-
cations. The TPM virtualization is performed principally by
the TVMM (Trusted Hypervisor). Note that the CRTM code
is located directly above the CPU initialization code, and both
are fetched out of protected BIOS non-volatile memory.
[0107] Ifthe VMM itself does not contain I/O device driver
code that is virtualized for the supported VMs, and the VMM
is a “block box” that does not directly support TPM virtual-
ization internally, then a modification to the system architec-
ture can be advantageous. An embodiment for such a modi-
fication to the software architecture is shown in FIG. 7. In this
implementation, a “Super” VM or “Console” VM is created,
labeled VMO, which hosts the TPM virtualization code as
well as all of the physical /O driver code. As can be seen in
the block diagram of FIG. 7, this particular implementation of
the software architecture includes four primary layers:
[0108] 1. A Boot layer at the lowest level that directly
interfaces with the TPM and makes its capabilities avail-
able to the upper layers in a secure manner.

[0109] 2. The TVMM/Trusted Hypervisor.

[0110] 3. The TPM driver and TPM virtualization soft-
ware.

[0111] 4. The virtualization platform SDK, which is pre-

sented to applications hosted by the VMs. These services
include the TPM device drive library, the TCG TSS
(Trusted Software Stack), and various application trust
and cryptographic services.
[0112] Layered on top of software layer 4 are the applica-
tions hosted by the VM. FIG. 7 uses the following acronyms:

[0113] ATL: Application Trust Library
[0114] CSP: Cryptographic Service Provider
[0115] TSP: TSS Service Provider

[0116] TDDL: TPM Devide Driver Library
[0117] BE-TPMD: Back-end TPM Driver
[0118] FE-TPMD: Front-end TPM Driver

II1. Communications Channel Virtualization

[0119] The proposed MIEP architecture preferably takes a
broad view of the communication resources available to the
device via multiple radios and networks. These communica-
tion links can be shared among applications or otherwise
coordinated for improved secure and reliable delivery of web
based services. One approach coalesces multiple wireless
links (such as multiple cellular air interfaces, WiFi, and
WiMAX) into a virtual communications channel. Virtualiz-
ing multiple links into a single virtual pipe improves diversity
robustness as well as energy efficiency.

[0120] There are multiple ways energy efficiency can be
improved: for instance, by having differentiated radios for the
most energy efficient use for a given bit rate, radio range and
protocol abstraction. The radios can be coordinated either as
a “paging hierarchy” or as an aggregation of multiple simul-
taneous links. As an example of the former, a distinction can
be made between a Low Power Radio (LPR) such as Blue-
tooth that provides low idle power consumption, and a High
Power Radio (HPR) that provides high through capacity as a
tradeoff against high idle power consumption (e.g., the WiFi).
In one approach, the (always-on) LPR acts as a pager to the
(normally-asleep or powered-down) HPR. The LPR radio,
therefore, acts as a carrier of control information for the
multi-radio communication link whereas data information is
transmitted via LPR and/or HPR depending upon the
throughput needs.

Aug. 13,2009

[0121] This idea can be extended across different radio
abstractions (e.g., across cellular and WiFi links). For
example, energy efficiency of VOIP delivery on smartphones
can be improved by using the cellular channel to wakeup the
WiFi radio for the VOIP call. WiFi can be more energy effi-
cient for making the active call, but the cellular channel can be
more energy efficient in quiescent/idle mode where it can be
used as a wakeup or paging channel.

[0122] These and other results point to the fact that energy
efficiency of radios and protocols is dependent upon the
nature of the traffic and the application needs for performance
and reliability. Multiple communication links open up a new
dimension of system-level optimization to maximize connec-
tion robustness, maximize throughput, minimize latency, and
minimize energy consumption for the MIEP.

[0123] We approach this optimization problem in a system-
atic manner by adding contextual awareness to the commu-
nication virtualization strategy. This contextual awareness
information is biased based on parameters established by the
user. Such parameters can include weightings for cost, band-
width, latency, and connection reliability. The types of con-
textual awareness factors can include location, energy status
of the MIEP, individual wireless channel link strength, and
costs associated with any link at that moment (such as
whether a wireless link is in “roaming” mode and is therefore
more expensive). Additionally, based on past location history,
one’s future wireless link situation can be predicted and this
information factored into the link virtualization strategy.
[0124] This type of virtual wireless link takes advantage of
intelligent management at both ends of the virtual channel,
and this can be facilitated through use of a Server based Agent
acting on behalf of the MIEP. The situation is diagrammed in
FIG. 8, which shows the multiple-links virtualized into a
single pipe.

[0125] InFIG. 8, there exists a trusted Agent running on the
Server which acts as the “sink” to aggregate the multiple
communications links on the “Server side” of the Internet
Cloud. Requests to web based services, for example, are then
relayed back out over the internet by the Agent to the service
provider. Note here the Internet Cloud was drawn twice (logi-
cal view) for the sake of conceptual clarity. The Agent has
access to contextual information that the MIEP does not (and
vice-versa), and preferably coordinates with the MIEP as to
the optimum virtualization strategy.

[0126] On the MIEP side, a multi-channel link layer unifi-
cation API allows apps to access the virtualized resource.
Much finer grain inter-channel interactions can occur on the
MIEP than at the server based Agent since it has close physi-
cal proximity to the actual communication channels.

[0127] The complete communications channel (“pipe”)
virtualization subsystem is represented by the functionality
contained within the dotted lined box. Note there is no reason
one of the links could not be a wired link, and there is no
reason that the Agent must be running in a trusted environ-
ment.

IV. Mobile Trust Module (MTM)

IV.A. Physical Implementations

[0128] IV.A.1 TPM Resident on MIEP Motherboard
[0129] In one embodiment, the TPM and the VMM code
are resident on the MIEP motherboard. This approach offers
the greatest security. However, this approach has the draw-
back that many existing mobile devices do not have integral

US 2009/0204964 Al

Hardware Roots of Trust, such as TPMs. Further, there are
practical and market barriers to installing the necessary
trusted boot and VMM code on these mobile device mother-
boards.

[0130] IV.A.2 MTM as USB Slave

[0131] There are other alternatives that are attractive from
an implementation and market penetration standpoint, par-
ticularly for markets such as Enterprise. One alternative that
is especially appropriate for larger form factor mobile devices
such as laptops is shown diagrammatically in FIG. 9. In this
embodiment, the TPM, the VMM code, the CRTM (Core
Root of Trust for Measurement), the CRTS (Core Root of
Trust for Storage), and the CRTR (Core Root of Trust for
Reporting) reside in a “USB Wrapper” module that fits
between a USB memory stick and a Host Mobile Device
(HMD). We denote the TPM equipped module the Mobile
Trust Module (MTM). In this implementation, the HMD acts
as a host system for the MTM, providing energy, compute,
memory, and I/O resources.

[0132] There are efforts underway today to incorporate
TPM type functionality onto USB memory sticks (which is
yet another embodiment). However, the implementation in
FIG. 9 is more efficient in that the TPM on the MTM can be
amortized over a large number of USB memory sticks. Data
can be stored in encrypted format over a large number of USB
memory sticks, all linked to the CRTS on the MTM.

[0133] IV.A.3. MTM as USB Master

[0134] Inanother embodiment, similar to that diagrammed
above in FIG. 9, the MTM could, in addition to USB slave
operation when inserted into an HMD, operate without the
HMD, and in that mode be a USB master to USB devices such
as memory sticks. To support this additional capability, the
MTM would incorporate a USB host controller and would
incorporate the ability to supply power to the USB bus either
with an internal battery, or with an external power supply that
would plug into the MTM. This embodiment would allow the
MTM to engage in secure web-transactions that do not nec-
essarily require a PC (e.g. music/movie downloads, stock
market access, etc).

IV.B. Achieving Trusted Boot from the MTM

[0135] A significant percentage of mobile devices existing
today, particularly portable computers, can have their BIOS
configured (by an Enterprise IT department for example) to
“BOOT FROM USB” in the BIOS Boot Order menu where
the USB driver is BIOS ROM resident. This allows the system
to boot from the MTM and a Trusted Boot process can be
executed from the MTM using the previously described Tran-
sitive Trust model to install a TVMM onto the HMD as shown
in the diagram of FIG. 10. Note that, unlike FIG. 1, the Boot
Firmware is not resident on the HMD, but rather on the MTM.
Most systems also offer a simple BIOS SETUP password that
is independent of administrative password and is not pro-
grammatically accessible, offering additional security.

[0136] One challenge for the Trusted Boot from the MTM
is to ensure that the HMD actually booted from the MTM—
and that the HMD is not rootkitted and the boot spoofed.
There are also new attacks that the hosted MTM implemen-
tation is subject to, including interception of the USB bus (a
“man in the middle attack™), malicious software running on
the host that mimics a host HMD that is booting from the
MTM, thus “fooling” the MTM into believing a secure boot
process had occurred, and malicious software that exists on
the host “in the background” or “in hibernation,” avoiding

Aug. 13,2009

detection while otherwise seeming to allow a secure boot to
occur. Such malicious software might, for example, snoop on
user keyboard or display 1/0.

[0137] However, this implementation of MTM has several
powerful resources at its disposal to mitigate such attacks.
One resource is the secure time tick counter in the TPM on the
MTM. This time tick counter holds the number of ticks in the
current session. It can have programmable accuracy as fine as
lus. Virus infections (including rootkits) have been shown to
be vulnerable to discovery through execution time measure-
ments, so the MTM can also execute random code challenges
on the host MIEP and measure the execution times.

[0138] The MTM can also access a secure Server, and
“cryptographically tunnel” through the potentially malicious
host. By contacting a host and mutually authenticating based
on a shared secret known only to the MTM and the Server, the
MTM can leverage mutual resources with the server to verify
the integrity of the host. This situation is shown in FIG. 11.
[0139] Once the MTM has determined that a secure boot
has taken place onto the HMD, all further communications
over the USB bus are encrypted, eliminating simple snooping
attacks on the USB bus.

IV.C. MTM Based Software Environment

[0140] Inone embodiment, the operating state of a “warm”
HMD is both preserved and usable after the Trusted Boot
process from the MTM. In other words, the MTM is inserted
into a running HMD and the VMM is dynamically installed
“under” the existing OS and environment running on the
HMD. In this scenario, the previously running OS and soft-
ware environment on the HMD would, after the Trusted Boot
from the MTM, be running in a VM hosted by the VMM. This
approach has the advantage of leveraging the OS and the
applications already resident on the HMD.

[0141] An alternate embodiment, which also preserves the
state of the “warm” HMD is to HIBERNATE the HMD, and
just before the HIBERNATE sequence finishes, initiate the
Trusted Boot process from the MTM into the TVMM envi-
ronment. Once the MTM is removed, or the user desires to
revert to the previously running OS and environment, the
HMD can be resumed from the HIBERNATED state.

[0142] Whenthe TVMM is installed onthe HMD as aresult
of the secure boot, the OS stored in the MTM (preferably
LINUX) is loaded and runs on the HMD in one of the VMs
hosted by the TVMM.

IV.D. User Authentication in the MTM/HMD Combination

[0143] Achieving a secure boot from the MTM to the HMD
preferably is a prerequisite for achieving secure user authen-
tication, because the I/O paths through which the user authen-
ticates are supported by the HMD and so preferably are
“Trusted Paths.” It may be possible to add a fingerprint sensor
integral to the MTM, and/or a microphone for speech recog-
nition/authentication, which would make these additional
authentication factors more secure.

IV.E. MTM Status Indicators and Control Buttons

[0144] One of the most reliable techniques for detecting a
rootkit on a PC is to force a hard reboot (by removing power)
and booting from a known good external media (after insur-
ing the correct BIOS boot order), such as CD, to then scan the
system.

US 2009/0204964 Al

[0145] To provide increased assurance of user control of the
MTM/HMD system, there preferably is at least one control
button on the MTM to initiate a System Reboot (Trusted
Boot) of the MTM/HMD pair, and/or to initiate a System
Verification of the HMD of a Trusted Boot has already
occurred. In one implementation, there are three lighted sta-
tus indicators, or one lighted status indicator capable of three
different colors. Green might indicate successful Trusted
Boot or verified and trusted system status, Orange might
indicate Trusted Boot or verification underway, Red might
indicate that Trusted Boot or system verification has failed.

IV.F. MTM as HMD Malware Scanning Locus

[0146] As a secure, portable, standalone compute capable
entity, the MTM is a natural place from which to execute
anti-malware software for an HMD, particularly upon initial
boot and before any suspect HMD resident code is loaded and
run.

[0147] Because of its ability to establish a cryptographic
link to a secure Server and perform a mutual attestation pro-
tocol, malware signature databases and other information can
be downloaded directly to the MTM from a Server, poten-
tially through a hostile HMD. With these capabilities, the
MTM can act as a disinfecting agent for HMDs.

[0148] As will be discussed further below, it is desirable, in
order to minimize energy expenditure and compute burden on
the MTM/HMD combination, that malware scanning tasks be
place shifted/virtualized to the Server where possible.

V. The Server in Support of the MIEP Model

[0149] Inone aspect of the system model, the MIEP/server
role is extended beyond that of a classic thin client client/
server model in that the server and its capabilities can be
viewed as an extension of, and subordinate to, the MIEP.
[0150] One of the important roles of the Agent Server
(“Server”) is to optimize the functionality of the MIEP, par-
ticularly in the areas of security, energy efficiency, and/or
mitigation of the functional limitations imposed by the OCC
(Occasionally Connected Computing) model and physical
and energy limitations of the MIEP. We call this MIEP func-
tional enhancement “trusted functional virtualization”. This
differs from typical web servers that provide web services on
a demand basis to any client with minimal formal trust or
security guarantees.

V.A. Ideal Server Supports Protected Capabilities, Roots of
Trust, and a Trusted Boot Process.

[0151] To fully realize the advantages of Server supported
functional virtualization, the Server preferably is capable of
securely and reliably attesting its state to the MIEP—and to
do this it supports the infrastructure necessary for remote
attestation, including Protected Capabilities (such as those
found in the TPM), Hardware Roots of Trust along the TCG
model, and a Trusted Boot Process. The Server trust and
security architecture in effect mirrors the trust capabilities of
the MIEP except that the superior resources of the Server
allow it to create many more VMs to support numerous
MIEPs. Also, the Server’s observability across MIEPs pro-
vides an MIEP with additional capability for network-wide
authentication and validation.

[0152] In the situation where the Server does not possess
the security capabilities outlined above by the TCG, then the
trust level can gracefully degrade to an “implied trust” model

Aug. 13,2009

in the Server, although the virtualization functionality can be
equivalent. This is most appropriate for enterprise situations
where the Server supports a specialized provisioned client
(MIEP) base, sits behind the corporate firewall, and is care-
fully managed and provisioned (so that trust can be implied).

V.B. VMs on the Server Support VMs on the MIEP

[0153] In one embodiment, applications running in MIEP
VMs can “spawn” VMs on the Server to create trusted hosting
environments in which MIEP Agents can run. This spawning
process preferably includes mutual authentication and attes-
tation.

V.C. Spawned Server VMs Conform to an API Supporting
MIEP Agents

[0154] The Server side VMs preferably conform to an API
to support Agent execution and communication with MIEP
VM hosted applications. This API allows the use of a variety
of Server types and implementations. The types of configu-
rations that can be supported include the following shown
below in Table 1:

TABLE 1

Server VM Support Options and Security Level

Client Actual Security

Type Server VM Support Level Trust Level

MIEP No VM Support Weak Implied Trust Possible

MIEP OS Hosted VMs Better Implied Trust Possible

MIEP Direct on Hardware Better Still Implied Trust Possible
VMM

MIEP TVMM Strongest “Formal” Trust &

Attestation

[0155] As can be seen in the table, overall MIEP/Server
system security level increases going down the table. When
the other, weaker, levels of security are utilized, the user
preferably would be presented with the choice of whether to
authorize Agent execution on the Server at that security level
via some form of trust User Interface.

V.D. Server VM Attestation to an MIEP VM

[0156] Inone approach, VMs can attest to their state when
challenged by an application running in an MIEP VM that has
spawned a corresponding Server VM. This provides the
mechanism for creating the trusted environment necessary for
applications hosted in MIEP VMs to run Agents on the server
to act on a proxy basis for the MIEP, and to provide dynamic
validation of the trusted environment.

V.E. The MIEP May Specify Capabilities of Spawned VMs
on the Server

[0157] In order to customize the security environment of
the Server VM, applications running on the MIEP VM pref-
erably can control the Agent host environment by specifying
capabilities of spawned Server VMs, including allowed 1/O
modalities. This specification of the Agent host environment
can take the form of MIEP generated policies. As an example,
the application running in the MIEP VM may specify that
only the TCP/IP port to/from the server VM be enabled.

[0158] Note that this is the inverse of digital rights manage-
ment situations where a content provider desires to specify
policies on the MIEP VM, such as “locking down” the MIEP

US 2009/0204964 Al

VM to which it is releasing content. Note that this is also the
inverse of situations where corporate policy is to be enforced
on the MIEP VM (such as allowed 1/0O modalities) to create a
sufficiently secure environment to enable functionality such
as Single Sign On (SSO), or the secure hosting of virtual
desktop, terminal client, or push data environments.

V.F. Server VMs Can Be Shared

[0159] For implementation efficiency reasons, it is usually
desirable that applications running in difterent MIEP VMs be
able to share the same Server VM, provided that sufficient
security criteria are met by each participating MIEP VM.

V.G. A TVMM Implementation Inherently has Minimal
Trusted Path Issues

[0160] Existing proposals to deal with trusted path issues
involve adding hardware/software complexity to the MIEP.
Examples include encrypted keyboard /O, encrypted screen
1/0, adding TPM type functionality to motherboard based
Flash Memory, and adding TPM type functibnality to USB
memory sticks. We term this a “distributed TPM” approach
where, because the central mobile device implementation
(software environment/OS) itself is not trustworthy, the
mechanisms necessary to establish trust in these peripheral
system resources have been pushed out to the peripheral
system resources themselves.

V.H. Trust Level Indication Ul—Visual Attestation

[0161] An important Ul requirement for any MIEP that
simultaneously supports trusted and untrusted VMs and
application software is to indicate to the user the trust level of
the application and/or VM he is interacting with. We call the
overall capability of securely displaying to the user the trust
state of the MIEP “visual attestation”.

[0162] An important functional requirement to support
visual attestation is the ability to place portions, and in some
cases, all of the framebuffer under exclusive control of the
VMM, or the console/DOMO VM under direct control of the
VMM that is responsible for physical hardware 1/0. This
dedicated portion of the framebuffer under VMM control then
provides trust status feedback according to configurable poli-
cies, and can be used for other user authentication purposes.
There is then at all times a “trusted path” to said dedicated
framebuffer portion of the display from the VMM.

[0163] There are two fundamental Ul operating modes to
consider:
[0164] 1. “Windowed” mode, where both untrusted and

trusted software share the same displayed framebuffer,
along with the trust indication status area owned by the
VMM; and
[0165] 2. “Full screen” mode, where the entire frame-
buffer, except for perhaps trust indication status, is
exclusively written by either by trusted or untrusted
software, such as a VM or application, along with the
trust indication status area owned by the VMM.
[0166] Inthe Windowed mode case, the challenge is how to
provide secure display based 1/O to trusted software within a
framebuffer shared by untrusted software, and to do so with
minimal impact on either the performance or the pre-existing
windowing models and behavior. It is desirable to implement
this simultaneous support of trusted and untrusted “windows”
as it provides a more seamless user experience.

Aug. 13,2009

[0167] RefertoFIG.12 for anillustrationofa secure log-on
example. Here, with the exception of the trust bar at the top of
the screen, the display (rendered from the framebuffer) is
currently owned by an untrusted VM (as illustrated by the
dashed lines to the Untrusted VM). In this environment, the
trust bar at the top of the screen indicates an untrusted state
status—perhaps by displaying a red color. There are icons on
the screen, representing shortcuts, that initiate execution of
trusted applications running in a separate trusted VM (shown
at the bottom of the Figure). If the application launch shortcut
is clicked on, control will preferably be passed from the
untrusted VM to the VMM, and then to the trusted application
running (in this case a log-on dialogue) hosted by the trusted
VM, where the trusted application paints a window into the
framebuffer (as shown by the dashed lines), such as a login
dialogue box, for display on the screen. The trusted applica-
tion provides to the VMM the window perimeter values
(where in the framebuffer the box is placed) of the dialogue
box to the VMM, and from that point on that portion of the
display/framebuffer is locked for exclusive use by the VMM
for that trusted application. This means that untrusted appli-
cations cannot write or read (“screen scrape”) the framebuffer
contents and use character recognition or other techniques to
recover confidential information such as User 1Ds, and that
portion of the display is always maintained in the foreground,
so that it cannot be overwritten by a malicious program in an
effort to phish.

[0168] A prerequisite for correct operation is that there be a
trusted path to the keyboard and mouse. That is, once the
cursor is placed within the trusted window, that window has
1/0 focus and that focus cannot be changed by another appli-
cation until the user moves the cursor out of the trusted
window, and only user generated movements of the mouse
can move the cursor. This will prevent untrusted software
from “stealing” keystrokes by momentarily switching focus
to another window without the user intent and action of mov-
ing the cursor out of the trusted window. Only while the
mouse is within the perimeter of the trusted window is the
trust indicator at the top of the screen set to the trusted state
(perhaps displaying a green color).

[0169] Note also, that once a trusted window is to be
released by a trusted application, where that area of the dis-
play is to be “returned” to the framebuffer for use by poten-
tially untrusted applications, that section of the framebuffer
should be first written with a random pattern. One skilled in
the art can readily understand variations to the above
approach, such as wishing to display the window representing
an untrusted application within a framebutfer generally con-
trolled by a trusted application—but all rely on the existence
of trusted paths to the framebuffer, the keyboard, and the
mouse—and the enforcement of transparency and predict-
ability of I/O focus to the user.

[0170] FIG. 13 shows an example of the “full screen”
mode, where a “trust bar” at the top of the screen indicates to
the user that the current window (which is a full screen dis-
play) the user is interacting with can be trusted. The trust level
of'the indicator is a matter of policy, but we take it to mean that
the execution environment supporting that particular window
is attestable. In this example, a virtual machine provisioned
for access to a particular set of corporate resources, in this
case VM Engineering, is shown.

[0171] The “trust bar” at the top of the display is controlled
exclusively by the VMM or console/DOMO0 VM, and, in this
example, overlays the screen image controlled by the host

US 2009/0204964 Al

VM and/or the application(s) hosted by that VM. The trust bar
overlays the underlying window in a semi-transparent man-
ner, indicating that this VM can be trusted. This is one visual
method of indicating trust. Another might be to frame the
entire display with a thin border of a certain color, such as a
shade of green If the current display/framebutfer owner can-
not be trusted, we use the convention of indicating untrusted
status by turning the trust bar a transparent red with a black
border around it. One skilled in the art can readily understand
there are many possible visual mechanisms of displaying
trust level—but none are reliable unless that part of the dis-
play/framebuffer displaying the trust level is exclusively con-
trolled by a fully trusted resource, such as the VMM, guaran-
teeing a trusted path to that physical I/O resource.

[0172] V.H.1 Extending Trust Level Indication to Server
Based Agents
[0173] Note that the trust bar concept, coupled with the

ability of the MIEP and the Server to mutually attest to each
other, can be extended to also enable the display to the user of
the trust level of the software running on the Server. An
example would be a VM that that user has spawned on the
Server to host an Agent or a service on the MIEPs behalf. If
the VM and hosted Agent can successfully attest to the cor-
rectness of their state to the MIEP, that information can be
displayed in the trust bar in a manner similar to that described
above.

V.1. Global State Cache

[0174] With the continuing rapid decline in the price per bit
of non-volatile memory (particularly NAND FLASH), a
memory technology that uses very little quiescent power, it is
attractive to leverage this resource to maximize functionality
under the OCC model while minimizing MIEP energy
requirements.

[0175] One approach is to create a substantial cache on the
MIEDP, called the Global State Cache (GSC), that caches user
internet state, including data and programs. The GSC is man-
aged on a contextually appropriate basis. Relevant contextual
variables include time, location, available internet band-
width, energy availability, and task. Although it is tempting to
use simple “fetch ahead” type strategies to manage the GSC,
such strategies have been shown to be energy inefficient.
[0176] The GSC will help maintain operational coherence
in support of the OCC model. By operational coherence we
mean that should connection be lost, there is sufficient state in
the MIEP to continue meaningful computation/workfor the
typically expected connectivity loss duration.

[0177] One strategy for maintaining cache contents that
offers significant improvements is to use a running history
time series ofpast contextual data, such as location and task,
to predict future needs and thereby optimize the GSC main-
tenance policies.

V1. Software Architecture of the Agent Services

VI.A. Virtual Services

[0178] Leveraging Trusted Computing technologies as out-
lined in the previous sections allows for the development of
mobile applications and services using a distributed virtual-
ization model that spans the network between them: Virtual
Applications that provide some service to mobile users, com-
bining the rich context and availability of mobile platforms
with the reliability and ubiquity of web services in a seamless

Aug. 13,2009

manner. This is facilitated by a system, enabled by a TVMM
with a core root of trust that preferably:

[0179] 1. Provides trusted functionality through the use
of virtualization on both the MIEP and the TSEP
(Trusted Service EndPoint),

[0180] 2. May be driven and controlled by the user,
where the trusted application on the MIEP causes the
instantiation of a Virtual Service on the TSEP,

[0181] 3. May be driven and controlled by the service
provider, where the Virtual Service initiates the instan-
tiation of a trusted application on the MIEP to provide
some trusted service, and

[0182] 4. Supports both unidirectional and bidirectional
(mutual) attestation as required by either party (MIEP or
TSEP).

[0183] In one approach, a platform or environment sup-
ports applications that take advantage of connectivity and
mobility through the use of Virtual Services. In this platform,
trusted application components on the MIEP are associated
with trusted service components running on the TSEP. These
components, which are running in trusted VMs at both End-
points, attest to and communicate with each other through an
encrypted link that is dedicated to their association. Because
of'this link, these mobile and service-based application com-
ponents comprise a single Virtual Application that spans the
network between them in a transparent way.

[0184] Note that the a TSEP is generally resident on a
server, but not necessarily so. The TSEP could just as easily
be resident on another VM on the MIEP.

[0185] FIG. 14 shows an example architecture for these
Virtual Applications. Trusted applications running on the
MIEP are associated with Virtual Services and vice-versa.
Specifically, the architecture would leverage a HROT, such as
aTPM to provide a trusted boot sequence which encapsulates
a TVMM that hosts both trusted and open (untrusted) VM’s.
These VM’s host one or more agents and are spawned in
response to a request by a MIEP.

[0186] Note the following:

[0187] 1. Components of a Virtual Application mutually
attest, and leverage that attestation to authenticate to
each other.

[0188] 2. These components reside in trusted VMs onthe
MIEP and on the TSEP. The trusted VM’s on the TSEP
host a service software stack to form what we call Virtual
Services.

[0189] 3. A review ofthe currently used service software
architecture makes it apparent that Virtual Services
themselves may actually be comprised of a plurality of
Virtual Services, each dedicated to a specific tier. FIG.
15 depicts this specific deployment model.

[0190] 4. Multiple trusted Agents can be hosted in a
single Virtual Service VM.

[0191] 5. Attestation between components is done in a
manner that is independent from the user session. This is
an important distinction for the Virtual service architec-
ture, which may spawn several instances of the same
Virtual Service VM, one for each of several user ses-
sions.

[0192] 6. When a remote VM is spawned by an applica-
tion running in a local MIEP VM, the VM’s (and poten-
tially the Agent(s) and/or application(s) running in those
VMs) mutually attest independent of user authentica-
tion. Since, for example, a Trusted Application on the
MIEP trusts and is trusted by the Virtual Services com-

US 2009/0204964 Al

ponents, there is no need for the user to be authenticated
by the Virtual Services components. User authentication
is generally policy or application driven and generally
occurs between the MIEP and the user. User authentica-
tion could be required, for example, only when the user
wishes to spawn a remote VM to host a trusted Agent, or
when the user wishes to access protected content which
requires access to protected resources contained in the
TPM. Note though that a user authentication request by
any application is not precluded. Such user authentica-
tion is typically done using means such as a shared secret
(password) or a biometric measurement or a combina-
tion of multiple authentication factors.

VI.B. Complete Virtualization of Services

[0193] The characteristics of the Virtual Service architec-
ture changes somewhat when one considers the implementa-
tion of multiple tiers that are common in Service Software
Architectures. FIG. 15 depicts the Virtual Service architec-
ture in a multi-tier deployment. For the sake of brevity, we
have foregone the depiction of scalability and redundancy.
That is not to imply that these concepts could not or would not
be applied to the service architecture illustrated above. In fact,
the service site shown in FIG. 15 is intended to support
complete redundancy of service.

[0194] Note the following:

[0195] 1. The Load Balancer need not be trusted in order
to produce a trusted virtual service. Requests between
the MIEP and the Web Server tier would naturally be
encrypted, protecting it from exposure to exploits on the
load balancing platform.

[0196] 2. Both the Web and Application Server support
trusted VM’s that host Agents. The function of these
Virtual Services is to provide an attestable platform from
which to run Trusted Agents on behalf of applications
running in trusted VM’s on the MIEP.

[0197] 3. Virtual Services host Agents on the Web server
and the Application server that are correlated to each
other. This correlation may be on a 1-to-1 or 1-to-many
basis depending upon the Agent functionality.

[0198] 4. The Data Service (based upon a platform such
as Oracle or Microsoft SQLServer) need not run in a
trusted VM. The data correlating to an individual MIEP
user would be encrypted and tunneled through the
server. This could and would include indexing informa-
tion used for queries of sensitive information.

[0199]

[0200] Virtualization across tiers—As discussed above,
Web and Application services preferably each host
trusted Agents that are somehow correlated to each
other, supporting a single user session running on a
MIEP. User sessions would generally be managed
through the use of a Single Sign-On (SSO) solution and
Virtual Services attest to each other and to the MIEP
across these tiers without compromising trust.

[0201] Repository Encryption—The encryption of indi-
vidual rows or entries in a standard Data Store intro-
duces some interesting problems for data query/recov-
ery. Most notably, when queries of sensitive information
are necessary, the keys for that search can also be sensi-
tive. It can be necessary, therefore, to engage an indexing
scheme on the Data Store that utilized encrypted search
keys.

In addition:

Aug. 13,2009

[0202] Hardware support—The equipment that is in use
today in Web Service deployments comes in a wide
variety, from low cost Intel hardware running Linux to
expensive Sun and IBM machines running Solaris and
AIX, respectively. Support for and adoption of a trusted
boot sequence based upon a HROT such as a TPM in all
of these environments and platforms will take time, and
indeed, may never come about for some of them. The use
of the Mobile Trust Module (MTM), described in pre-
vious sections, will provide access to HROT based func-
tionality for some of these platforms, but many legacy
service systems will continue to rely on traditional secu-
rity measures. FIG. 16 shows the use of the MTM for this
purpose in one possible implementation of a virtual
server environment.

VI.C. OS Hosted Virtualization of Services

[0203] Although not an ideal embodiment, a reasonable
alternative embodiment could utilize OS hosted VMs, per-
haps using a Type-2 hypervisor, to provide some reasonable
level of security and trust for the Agents hosted on the service
architecture. While the VM is hosted on an untrusted plat-
form, specific measures can be taken to ensure a level of trust.
[0204] Storage Encryption—Storage utilized at the data
store can be encrypted utilizing some standard form of reposi-
tory encryption that is keyed off of key material originating
from the MIEP.

[0205] Memory—The OS-hosted VM can be augmented to
provide encryption for at least parts of the memory space
assigned to the VM designated as critical. In fact, given the
availability of processing power and the scaling aspect of the
service architecture, the entire VM memory space can be
encrypted.

[0206] Attestation—It is not possible to attest for the host
OS or the platform in this architecture, but the static aspects of
the VM can support attestation. Encryption of the VM storage
and memory space makes the spoofing of VM attestation
information difficult and time-consuming.

[0207] Path Limiting—Generally the data utilized or stored
forthe implementation of the Agent originates with the MIEP,
especially for Agents that are spawned by the user via inter-
action with the MIEP. In this general case, the access to
devices and resources on the server can be limited to the
processor, memory, storage and network ports. Network
access can utilize standard encryption methods for securing
information passed between the MIEP and the Agent as well
as for information passed between the Agent and the Internet.
[0208] In FIG. 17 we show that an OS hosted, secured
VMM can provide some level of trust to the Agent Service
architecture. We are calling this VMM the Secured VMM
because it does provide some level of security, but cannot be
labeled Trusted. While the approaches that can be employed
for securing this VM are effective, an exposed server can still
be hacked, given enough time. Attestation has degraded
value, because it can be spoofed by a modified Agent. More
importantly, though, is the fact that once a Trusted Agent is
compromised, the user keys that secure the users data in the
Data Store are compromised as well. This means that all of the
user data in the store are exposed if any part of it is.

VI.D. TVMM Based Agent Master

[0209] The secured OS hosted virtualization system
described above can be augmented through the introduction

US 2009/0204964 Al

of some components that support the complete TVMM
model. One possible example is the use of a TVMM Based
Agent Master, which supports the trusted boot process and
that can fully attest to the MIEP. As depicted in FIG. 18, this
master would

[0210] 1. Store any or all keys associated with the user or
MIEP and would be utilized by the various Web Service
components for all authentications without exposing
these keys.

[0211] 2. Provide the attested static VM images that are
used as a template for each Agent. This is basically
whatever OS/application that comprises the Agent func-
tionality without any user state associated with it.

[0212] 3. Expose a gateway interface to the storage tier
so that access to any sensitive persisted agent data is
done only through this component by an OS hosted VM
that is spawned and attests to an image on the Master.

[0213] This approach does not per se prevent the hacking of
OS hosted VM’s on the Web or Application servers, but it does
make that hacking much more difficult, due to the ephemeral
nature of these VM’s. They are spawned to service one spe-
cific task or request and are removed as soon as they are done.
Hacked Agents cannot survive the spawning process because
their code is never committed to storage on the running server.
Furthermore, if one of the VM instances is exposed, only the
user data it is trusted with is at risk. The user keys do not leave
the VM Master.

[0214] Inshort, using this approach all keys are secured by
a fully attestable VM Master, the user data store is secured by
the VM Master, and the VM Master will only honor fresh
requests made by a VM that was spawned by it and is still
attestable. Furthermore, the OS hosted VM can only access
the limited subset of secure data registered to it.

[0215] InFIG. 18, a service request from the MIEP results
in the following steps:

[0216] 1. The requestis received by a service running on
the Web Server.

[0217] 2. The response of the Web Server is to load a
fresh copy of the specified Web Server Image from the
Master VM Server into a Secured Agent VM.

[0218] 3. The Web Server image contacts the Application
Server as part of its expected functionality.

[0219] 4. The Application Server platform loads a fresh
Application Server Image from the Master VM Server
into a new Secured Agent VM.

[0220] 5. All access to secured data from either the Web
or Application tiers is done through the Master VM
Server using keys that are only accessible there and
never on the untrusted servers hosting the Web or Appli-
cation tiers.

VII. Description of Agents and Agent Operation

[0221] We describe some possible Agents that are facili-
tated by aspects of the invention. These examples below
represent just a few of many that are possible.

VILA. Web Browsing Agent

[0222] A web browsingagent acts as a proxy for the user for
the purposes of improving privacy and anonymity and
decreasing the code size and energy “footprint” of the brows-
ing functionality on the MIEP. The web browsing Agent
virtualizes the user, placeshifting him to the server from the
perspective of the target web service.

Aug. 13,2009

[0223] The following benefits can accrue:

[0224] 1.Theactual user IP address can be hidden, vastly
improving anonymity and privacy, although the system
is still vulnerable to correlation attacks where the adver-
sary has access to both the input and output IP streams to
the server hosting the Agent.

[0225] 2. Anti-malware software can run as part of the
Agent environment, scanning data traffic as it is passed
to the MIEP, eliminating the related energy expenditure
on the MIEP.

[0226] 3. A full browser can be instantiated at the server,
while a lightweight user interface can be implemented at
the MIEP that simply renders compressed browser
images.

[0227] 4. Security settings at the Agent can be relaxed
(such as enabling cookies) over what the user might
normally allow; improving website accessibility (many
websites fail to function properly unless cookies are
fully enabled). Scripts and other plug-ins that would not
normally be enabled could be allowed at the Agent
because the MIEP and the user’s non-browser resident
local data could not be compromised.

VIL.B. Web Content Filtering Agent

[0228] Much of the content of typical web pages consists of
advertisements, and these advertisements are often image
content in the form of .gif or .jpg files that dominate the web
page in terms of total data payload. The purpose of the filter-
ing Agent is to remove and/or filter this extraneous content to
minimize downstream bandwidth requirements (and related
transmission energy expenditure) to the MIEP and required
rendering energy. This Agent would be preferentially a com-
ponent of the Web Browsing Agent, but could be a standalone
Agent if a Web Browsing Agent is not used. This type of
Agent is also beneficial to the wireless network carrier as the
wireless network capacity (the number of users that can be
supported) can be increased if the average data bandwidth to
each user can be decreased by filtering and compression.

VII.C. Malware Scanning Agent

[0229] Security requires energy expenditure, and one
aspect of the invention moves as much of the anti-malware
related energy expenditure, software complexity, and code
size footprint to the Server as possible. This implies a para-
digm shift in the current monolithic application model of
anti-malware software for the PC in that in the mobile world
the functionality is preferably partitioned between the MIEP
and the trusted server. Provisioning can also be simplified as
much of the actual scanning process is centralized, minimiz-
ing the need to “push” malware signature databases to leaf
nodes.

[0230] IP traffic that arrives in plaintext can be easily
scanned by the Agent. Examples of such traffic might be
email where the Agent is scanning for SPAM, etc.

[0231] An advantage of the trusted Agent approach is that
the Agent may have access to keys used by the MIEP for
decryption of IP traffic, can therefore decrypt that traffic, and
thereby scan a larger percentage of the traffic bound for the
MIEP.

[0232] From the enterprise perspective, when combined
with policies to “lock down” the corresponding VM on the
MIEP to maximize security and to uniformly provision, along
with malware scanning using a Server based Agent, these

US 2009/0204964 Al

practices constitute an important component of “extending
the corporate firewall” around the MIEP.

[0233] Another potential use for a Malware Agent is to scan
data that is “passed thru” the MIEP to the Server. If the MIEP
is browsing the web directly and wishes to download poten-
tially harmful content, it may choose to upload the data to the
scanning Agent on the Server to be scanned, or perhaps redi-
rect the data stream directly to the web based scanning Agent,
rather than perform the scan locally, depending on energy and
cost tradeoffs of local vs. remote scanning.

VILD. Behavioral Monitoring Agent

[0234] Polymorphic/metamorphic viruses and zero-day
attacks can escape static signature detection, and for these
threats behavioral monitoring during runtime is often
employed to flag suspicious behavior. Typical techniques
include instrumenting kernel level routines and hooking the
system API calls and passing data in real time to analysis
software that utilizes heuristic rule systems or employs learn-
ing/neural net techniques. The drawback is that these systems
run continuously, and therefore can consume considerable
energy.

[0235] An alternative system is to instrument the MIEP
VM, and then pass compressed “signatures” of real-time
execution behavior to the Trusted Server based Behavioral
Monitoring Agent for analysis. If the analysis energy expen-
diture is larger than the data transmission energy expenditure,
then the approach is advantageous, although the response
latency is likely increased. So for situations where rapid
response is critical, it may be necessary to run that specific
behavioral monitoring on the MIEP.

VILE. P2P Agent

[0236] Most P2P networks, including examples such as
Napster, BitTorrent, KaZaA, and eDonkey, require that the
network client (peer) support an upstream data channel that is
independent of actual user generated upstream data, in order
to maintain the network. However, this upstream data support
requirement usually is not desirable for the following reasons:

[0237] 1. Energy expenditure: The MIEP cannot afford
the energy expenditure for traffic which is not directly
associated with user demand or user productivity.

[0238] 2. Datatransmission cost: Depending on the loca-
tion and/or carrier policy, data transmission might be
costly. In Europe for example, “all you can eat” wireless
data access is not yet the norm.

[0239] 3. Asymmetric I/O: MIEPs may frequently oper-
ate with channels to the web that are highly asymmetric
(where the downstream bandwidth is much higher than
the upstream bandwidth), a situation not favorable for
P2P support.

[0240] Like the Web Browsing agent, the P2P Agent can
service the P2P network on behalf of the MIEP without
exposing the MIEP identity.

[0241] FIG.19 diagrams an example P2P Agent addressing
these issues, from a physical point of view. FIG. 20 diagrams
the P2P Agent from a logical point of view.

VILF. Data Compression and Transcoding Agent

[0242] A classic “thin client” implementation is one where
the client simply presents a viewport into an application run-
ning on a server. Providers of such “Virtual PC” thin clients
include NEC, Sun, CLI and others running software from

Aug. 13,2009

providers such as Citrix. This model is facilitated by a dedi-
cated reliable high bandwidth link between the client and the
server. Data passing between the thin client and the server are
often compressed to minimize enterprise network bandwidth
requirements.

[0243] However the variable quality of the communica-
tions link between the MIEP and the Server, resulting in an
Occasionally Connected Computing (OCC) model, makes
the classic Thin Client model more difficult, so the MIEP
should be capable of standalone operation. One goal of a data
compression and transcoding Agent then is to support a
mobile OCC model by reducing energy expenditure at the
MIEP and reducing data transfer latency.

[0244] One of the prevailing current commercial examples
of a data compression and transcoding system is the Opera
Mini Browser. Opera Mini fetches all content through an
Opera proxy server that runs the layout engine of the browser.
The engine on the proxy server reformats web pages into a
size that is suitable for small screens. The content is com-
pressed and delivered to the phone in a markup language
called Opera Binary Markup Language (OBML). Content is
typically compressed by 70-90%. However, there are some
difficulties with the centralized proxy server approach to this
functionality:

[0245] 1) The centralized server is a potential perfor-
mance bottleneck, both from the perspective of 1/0
bandwidth to/from the server, and of the computational
resources that can be expended on each client.

[0246] 2) Compression and transcoding is typically not
personalized to the individual user’s preferences or
mobile device contextual situation.

[0247] 3)Lack of privacy for the user (the user identity is
transparent to the server).

[0248] 4) The central server has to be involved in Digital
Rights Management (DRM) transactions whereby pro-
tected content is released to the browser for display.

[0249] 5) Additional compression can be achieved if the
server could decrypt and examine stream types that are
encrypted to apply the optimal compression type.

[0250] 6) A third party proxy server provider may not be
motivated to strip out content for which they obtain
revenue (such as advertising content) that the user would
just as soon remove.

[0251] 7) In order for standard browser encryption to
work (SSL or TLS), the intermediary server needs to
decrypt and encrypt on behalf of the thin client. If that
server is untrusted, there is no way to perform secure
transactions (online banking, trading, etc) in a verifiably
secure way.

[0252] We address these issues with a trusted Agent based
approach that is personalized for each MIEP, and that can be
deployed on a decentralized basis.

[0253] 1) The Agent can be deployed in a decentralized
basis, eliminating single server performance bottle-
necks. Greater computing resources can therefore be
dedicated to each client, including more sophisticated
compression schemes, stream type examination, as well
as decryption and re-encryption of data.

[0254] 2) The Agent can be personalized to user/session
preferences.

[0255] 3) An independent Agent improves the privacy
and anonymity of the user, particularly if the Agent is
hosted on a Trusted Server.

US 2009/0204964 Al

[0256] 4) DRM transactions can proceed directly to the
VM on the MIEP—bypassing the Server.

[0257] 5)Encrypted streams can be decrypted and exam-
ined for additional compression and transcoding oppor-
tunities. Once decrypted, for example, image content
can be appropriately decimated based on knowledge of
the target screen size. Image content might be re-com-
pressed with a more efficient, but lossier compression
encoder, or transcoded in a more efficient encoding,
whereas a stream such as compressed speech might be
left alone.

[0258] 6) Undesirable content, such as advertising con-
tent, can be stripped from the web page before being
compressed/transcoded and transmitted downstream to
the MIEP, with such filtering mediated by individual
user preferences.

[0259] 7) Verifiably trusted Agents can handle the proxy
behavior for encrypted (SSL/TLS) transactions, per-
forming the transcoding task on behalf of the MIEP in a
secure manner.

VIL.G Communications Channel Virtualization Agent

[0260] This functionality was discussed previously in the
Communications Channel Virtualization section. A trusted
Agent running on the Server acts as the “sink” to aggregate
the multiple communications links on the “Server side” of the
Internet Cloud. Requests to web based services, for example,
are then relayed back out over the Internet by the Agent to the
service provider.

VILH. Data Storage Agent

[0261] The data storage Agent acts as a broker to store/
retrieve data to/from the various storage locations (such as
Amazon’s Simple Storage Service—S3) via the web. The
Agent makes intelligent decisions about where to store the
MIEP data based on user weighted parameters such as cost,
access latency, and storage location. The Agent handles
encryption/decryption of data before it is forwarded to the
appropriate storage location, thereby relieving the MIEP of
that compute and energy burden.

VILI. Application ViewPort Agent

[0262] This agent mediates classic thin client functionality
in that it interfaces a viewport on the MIEP to an application
running on behalf of the MIEP on a VM on the Server. This
agent acts as a virtual screen and Ul I/O channel for the
application, passing the screen image down to the MIEP for
rendering on a viewport. With this capability, software can be
run on the Agent that is not “installed” on the MIEP or where
the energy cost is too high to run locally or where the local
compute resources are inadequate. An example might be an
engineer that wishes to run a large Matlab simulation.

VILI. MIEP Global State Cache Management Agent

[0263] One purpose of the Global State Cache (GSC) is to
improve MIEP functionality under the OCC computing
model while minimizing MIEP resource requirements. This
Agent uses contextual clues, past behavior (including loca-
tion and internet connection quality), current MIEP status and
task set, along with user specified parameters, to prefetch into
the cache that state (data, programs, etc) which will maximize
MIEP functionality at present and near future. Since prefetch-
ing into the cache that state which is not necessary is wasteful

Aug. 13,2009

of energy and communications bandwidth, a highly intelli-
gent contextually aware GSC Management Agent can be
advantageous.

VILK. Transaction Management Agents

[0264] These types of Agents broker MIEP transactions
when the MIEP or the user is unavailable. An example might
be bidding on an eBay item where the user does not want to
bid until a few seconds before the auction ends, but is not
confident in the communications availability or latency of the
MIEP. Another example might be a situation where the user
wants a transaction Agent to monitor airline prices to shop for
the best deal to a destination within a certain set of param-
eters. It is important that the Agents be trusted and operate in
a trusted environment so that the user can leave with the
Agents those passwords or other authentication and purchase
information necessary (such as credit card information) for
these Agents to act as a full proxy on behalf of the user.

VILL. Web Identity Broker Agent

[0265] This Agent maintains the various identities (authen-
tication data, etc) used to interact with a variety of web sites
and services to create a virtual Single Sign On (SSO) function
to the web. The Agent based approach has an advantage over
a centralized approach in that the Agent can be owned and
controlled by the user, allowing Agent code and security
measures to be personalized to individual user requirements.
Another advantage over centralized systems that propose
leveraging SIM cards at the Endpoint for authentication pur-
poses is that wireless carriers often do not expose SIM data
outside their network, typically supplying only session based
IP addresses to the web. In other words, the authentication is
not end-to-end. Use of a HROT such as the TPM insures
secure end-to-end authentication regardless of which net-
work the MIEP is utilizing to communicate with the web.

VIII. Aspects of System Operation

[0266] The relationship between the MIEP VM instance
and the Server VM instance is shown schematically in FIG.
21. The diagram illustrates an example embodiment for situ-
ations where applications running in a trusted VM on the
MIEP wish to run trusted Agents on the Trusted Server. The
untrusted VM (on the left) on the MIEP cannot compromise
the Trusted VM because of the use of the TVMM to isolate
these VM instances. Furthermore, in this particular instance a
security policy is established whereby only one of the many
possible WAN connectivity links to the server is enabled from
the Trusted VM (say Ethernet for example). All other I/O
modalities such as BlueTooth (BT), WiFi, USB, etc. are dis-
abled. On the Server side, the Trusted VM hosts trusted
Agents executing on behalf of the MIEP application hosted in
the MIEP trusted VM. Because these VMs can mutually attest
to each other, and the link between them is secure (VPN for
example), applications such as anti-malware, web surfing
proxy, P2P proxy, etc can be run on the Trusted Server in a
trustworthy manner on behalf of applications hosted by the
trusted VM.

VIII.A. Mutual Attestation

[0267] VIII.A.1 Authentication Prior to Attestation—Use
of AIKs
[0268] As was highlighted in the example above, the ability

for independent parties to mutually attest to each other’s state

US 2009/0204964 Al

is highly desirable. However, before attestation can take place
the parties must authenticate each other’s identity. This is
done indirectly by digitally signing the PCR (Platform Con-
figuration Register) values—residing in the TPM—to be
delivered to the challenging entity using an asymmetric key
pair.

[0269] Since Endorsement Keys (EK) are never made pub-
lic, the TCG protocol calls for the use of a pseudonym, or
alias, of the EK in the form of the Attestation Identity Key
(AIK). The AIK is also an asymmetric key pair, and a TPM
can create a virtually unlimited number of AIKs. AIKs are
signature keys that are used to sign PCR values for delivery to
a challenging third party.

[0270] However, for privacy reasons, it is preferable that
the AIK not be linkable to the platform/TPM that created it,
and so the TCG has designed a trusted service provider (or
Trusted Third Party (TTP), the Privacy Certification Author-
ity (PCA) to provide AIK Certificates.

[0271] VIII.A.2 Attestation Protocol Using AIK Certifi-
cates
[0272] We describe below a representative attestation pro-

tocol for a challenger wishing to run a secure application in a
secure environment on the MIEP. A similar protocol occurs
when a challenger (an application on the MIEP) wishes to run
an application in a secure environment on the Server. This is
not meant to be a definitive description. There are many
possible variations.

[0273] Note that since the TPM is virtualized in our pre-
ferred embodiment, the protocol appears to the challenger as
if it is dealing with a platform running a single OS and
possessing a single TPM. This embodiment then supports our
“compartmented attestation” model.

[0274] When anew TPM starts to function for the first time,
a TPM Activation Protocol is run in which either the manu-
facturer, or a Trusted Third Party (TTP) Certification Author-
ity (CA) generates an Endorsement Key pair (EK_PUB,
EK_PRIV) consisting of the public (_ PUB) and private
(_PRIV) keys, which are installed into protected locations in
the TPM, and also generates an Endorsement Certificate
(EK_PUB_CERT), signed by the manufacturer or CA’s pub-
lic key, containing EK_PUB, the TPM version number, and
manufacturer or CA identification information. The
EK_PUB_CERT is stored on the platform, but not on the
TPM.

[0275] The owner of the platform “takes ownership” of the
TPM by inserting a shared secret into the TPM that is
encrypted by EK_PUB.

[0276] The EK may not be used to create signatures; it may
only be used to establish the TPM owner and to create AIKS,
which act as pseudonyms for the EK. AIK key pair generation
is completely controlled by the platform owner. AIKS in turn,
may not be used to encrypt, but only for purposes of digital
signature by the TPM on information such as PCR values.
[0277] AIK Certificate Generation: In order to avoid link-
ing the AIK to the platform identity, and thereby protect the
user’s anonymity, a TTP CA is used—the so called Privacy
CA (PCA) to provide a certificate for the AIK_PUB part of
the AIK key pair.

[0278] An example of an AIK certificate generation proto-
col is diagrammed in FIG. 22. At the start of the protocol, the
MIEP holds the PCA_PUB key, and the EK_PUB_CERT.
The PCA holds the EK_PUB, the EK_PUB_CERT, and the
PCA key pair.

Aug. 13,2009

[0279] After generating an AIK pair, the platform requests
an AIK certificate (AIK_PUB_CERT) be generated by send-
ing to the PCA, via secure channel or encrypted with PCA_
PUB, a bundle consisting of the AIK_PUB, the EK_PUB_
CERT, and some other information. The PCA verifies the
credentials by first decrypting the bundle using PCA_PRIV,
verifies that the EK_PUB for that TPM is on its list, and
returns an AIK_PUB_CERT certificate to the platform that
has been encrypted with EK_PUB (the AIK_PUB_CERT is
signed by PCA_PUB).

[0280] Remote Attestation: At the start of the remote attes-
tation protocol, the MIEP platform holds the EK pair, the
EK_PUB_CERT, the AIK pair, the AIK_PUB_CERT, and the
PCA_PUB. Although the PCA holds the PCA pair, the
EK_PUB, and the EK_PUB_CERT, it is not involved after the
AIK certificate is generated. The challenger holds the PCA_
PUB and the EK_PUB.

[0281] An example of an attestation protocol is dia-
grammed in FIG. 23. The protocol starts with a challenger
requesting, for example, a Secure Application (SA) be run on
the MIEP. The MIEP responds by loading the SA, the MIEP
RTM (Root of Trust for Measurement) hashes the SA, and the
MIEP RTS (Root of Trust for Storage) sends the hash result to
the TPM to be appended/digested to the PCR to create PCR',
and the hash result is also stored in the SML (Stored Mea-
surement Log). The SA creates a public/private key pair and
sends the public part to the TPM. Now the TPM certifies the
credentials to be delivered to the challenger using the AIK _
PRIV part of the AIK key pair certified by the PCA. The
credentials include the SA_PUB key, the current PCR value,
and a Nonce or monotonic counter value (to prevent replay
attacks). The challenger validates the credentials using the
PUB_AIK key and then recomputes the PCR digest from the
SML values to compare against PCR and also compares the
hash of SA against an expected value. The MIEP now runs the
SA. The challenger can issue a challenge to the SA using
some random value, and the MIEP responds by signing the
number with the SA_PRIV key. The challenger can then
validate the signature using the SA_PUB key to verify that the
correct SA is running. Upon SA termination, the challenger
can challenge the MIEP again to determine that the software
environment did not change during the execution of SA. Note
that if any software is loaded into the environment by the
MIEP, the RTM will recomputed the digest and store a new
PCR".

[0282] VIII.A.3 Direct Anonymous Attestation

[0283] A weakness with the use of a Privacy Certification
Authority (PCA) to certify an AIK is that the third party may
not in fact be trusted and that it is also possible to associate
AIKs with a given device. To address this shortcoming the
TCG has adopted a protocol known as Direct Anonymous
Attestation (DAA) that is a group signature where the signa-
ture cannot be opened—and anonymity is not revocable.
[0284] Detractors of this type of group signature approach
point out that if it is broken—it will be broke everywhere—a
weakness of this type of approach that was made painfully
public when the Content Scrambling System (CSS) was
cracked. This weakness is known as BORE (Break Once, Run
Everywhere).

VIIL.B. Platform Independence—Ability to Migrate Virtual
Machines

[0285] Mobility is more than just about the ability to work
and access resources and information when mobile. It is also

US 2009/0204964 Al

about the ability to migrate work environments. The ability to
migrate a complete environment (virtualized environment)
between platforms is very powerful, particularly where at
least one of the platforms is mobile and where the communi-
cations channel is wireless. Such a capability is facilitated by
using a VMM model.

[0286] The MTM reduces mobility to its core essence of a
mobile Root of Trust, a minimal portable repository of per-
sonal identity and Trust that is capable of leveraging a variety
of hosts to access the internet using security based mecha-
nisms to extend a Trusted Environment to the host.

VIII.C. Platform Use of Meta-Data

[0287] Meta-data, that is, information about the nature of a
given data, has been used in software engineering to provide
capabilities for delayed declarations (common being use of
reflection in Java). Meta-data can also be used for conveying
contextual or environmental knowledge to a system. For
instance, an operating system can be aware of memory per-
formance issues being based by the cache/paging subsystem,
or processor slowdown/shutdown. Meta-data has also been
used in adaptively controlling transcoding of video data for
energy efficient mobile devices. In another aspect of the
invention, meta-data is used for contextual awareness such as
the following elements:

[0288] 1. A framework for declaring, attaching, updating
meta-data that allows us to use it for feedback (back-
annotation) and/or for composition (e.g., radio and pro-
cessor meta-data);

[0289] 2. Secure capture of the location information as a
meta-data that can also be differentiated on security
levels (e.g., the meta-information is available only at the
link layer or transport layer thus preventing spoofing at
the application layer). This can be significant since loca-
tion information such as NMEA sentences from GPS are
easily spoofed by the application;

[0290] 3. Use of meta-data by the virtual machine moni-
tor for coordinating processing and communication
resources. For instance, by virtualizing radios for use
across various VMs, the information on radio usage by
individual VMs can be communicated in a radio-inde-
pendent manner across the VMs and aggregated at the
communications agent.

VIIL.D. Example Uses of the MIEP Trust Capabilities

[0291] VIIL.D.1. Remote Provisioning
[0292] The ability to reliably, securely, and remotely pro-
vision MIEPs they are managing is crucial for both Enterprise
and cellular Carriers. For Carriers, the driving needs include:
[0293] 1) Reliable support for Over the Air (OTA) soft-
ware updates
[0294] 2) Maintaining network security and preventing
denial of service attacks
[0295] 3) Reliable user authentication
[0296] 4) Creating secure environments to support value
added services such as financial transactions

[0297] For Enterprise, the driving needs include:
[0298] 1) Supporting secure corporate network access
[0299] 2) Reliable user authentication
[0300] 3) Supporting lost data destruction and other data

security measures

Aug. 13,2009

[0301] 4) Supporting computing environments for con-
tractors that meet data security and regulatory require-
ments.

[0302] 5) Secure hosting environments for corporate vir-
tual desktops and terminal clients

[0303] 6) Secure hosting environments for push data
environments

[0304] Aspects of the invention significantly improves the
ability of Enterprise IT departments and Carriers to meet
these needs as, by virtue of the HROT, trusted boot, and
integrity measurement and attestation capabilities they can be
assured that the MIEP is in a known good state, and that
secure trusted paths exist for user input to support reliable
authentication and user 1/O. Furthermore, the remote provi-
sioning entity can create separate strongly isolated environ-
ments on the MIEP, by using VMs on the MIEP, that are
individually provisionable and attestable, thus providing the
provisioning entity with a great deal of flexibility in Endpoint
management and configuration.

[0305] VIIL.D.2 Applications

[0306] Existing mobile internet Endpoints that claim to
offer high security typically achieve that security via a closed
platform. However, as the market moves towards open plat-
forms, spurred by open networks, more complex operating
systems, the ability to download and install arbitrary applica-
tions, and with end users using their personal Endpoints for
corporate purposes, aspects of the invention offer a method of
achieving typically better than closed platform security on an
open platform.

[0307] Significant effort is being expended in the Enter-
prise to support, centralized client/server computing, most
recently in a form known as server based desktop virtualiza-
tion. However, this approach has a number of drawbacks:

[0308] 1) It does not take best advantage of the continued
decrease in cost and increase in functionality in MIEPs

[0309] 2) Users typically experience long boot times

[0310] 3) The user experience is dependent on the net-
work bandwidth

[0311] 4) Difficulty in supporting rich media types
because of the network bandwidth required

[0312] 5) Loss of worker productivity when not con-
nected to the network.

[0313] Two important reasons typically cited as to why the
Enterprise does not place greater emphasis on Endpoint based
desktop virtualization as an alternative are provisioning and
security. Both of these Endpoint issues are addressed by
aspects of the invention, enabling Endpoint based desktop
virtualization to become a predominant Enterprise mobile
computing paradigm.

[0314] Some example applications, and how they would be
enabled by various aspects of the invention, are highlighted
below:

[0315] Secure Terminal Client Hosting. A VM that is pro-
visioned to be “locked down” on the MIEP, such as the locked
down VM in FIG. 21, can be used to host a secure Terminal
Client for access to Enterprise networks. This VM is strongly
isolated from the other VMs, so cannot be compromised by a
VM that has become infected by malware.

[0316] Secure MIEP Based Desktop Virtualization. Similar
to the Terminal Client hosting example above, a strongly
provisioned “locked down” VM on the MIEP can be used to
host an Endpoint based desktop virtualization system.
[0317] Secure Push Data Hosting. Secure push email, cal-
endar, and contact lists are the staple of Enterprise mobile

US 2009/0204964 Al

Endpoint functionality, and typically the security of those
push applications is via closed platforms. Aspects of the
invention offer the opportunity of obtaining the “security of a
closed platform on an open platform” through the HROT,
trusted boot process, and integrity measurement capabilities
to host push data applications on the MIEP.

[0318] Secure Autonomous Lost Data Destruction. With a
HROT and trusted boot process, the MIEP is capable of
reliable erasure of lost data on an autonomous basis, i.e. the
data wipe does not require connection to the internet for the
wipe to be initiated and logged by the IT department. IT can
be confident that the data has been wiped, or safely seques-
tered via encryption, based on policies set on the MIEP.
[0319] The data wipe can be initiated on the MIEP based on
policies, such as requiring that the MIEP “phone home” on a
periodic basis, and if that is not achieved, initiate the data
wipe of sensitive data.

VIILE. Dynamic Attestation

[0320] Attestation, as defined by the TCG, is “the process
vouching for the accuracy of information”. Attestation can
take various forms—also defined by the TCG to be:

[0321] 1. Attestation by the HROT (the TPM)—an
operation providing proof of data known to the TPM.

[0322] 2. Attestation to the platform—an operation that
provides proof that a platform can be trusted to report
integrity measurements.

[0323] 3. Attestation of the platform—an operation that
provides proof of a set of the platform’s integrity mea-
surements.

[0324] 4. Authentication of the platform—providing evi-
dence of a claimed identity.

[0325] Inthe discussion below we use the terms verify and
verification to mean an operation that is used to measure the
validity or trustworthiness of a particular component of the
system, which in turn can generally be viewed of as a step in
an attestation process.

[0326] Current trusted boot models, represented by the
trusted boot procedure outlined by the TCG (http://www.
trustedcomputinggroup.org) take a fairly static view of the
attestable state. That is, only the state of the system immedi-
ately after boot can typically be attested. But the system state
may change with execution with the loading of dynamically
linked libraries, modifications to the Windows registry, etc.
Thus the system can drift from the initial attested state, and
verification becomes less reliable and attestation more diffi-
cult. Thus “one time” existing trusted boot and the resultant
attestation models limits the use of attestation in real world
situations. A method is needed to extend attestation tech-
niques to deal with the dynamic changes in the system state.
[0327] One approach is to run verifications in the back-
ground as the system state evolves, and “cache” results either
by extending the PCR registers directly in the HROT or by
storing verification results in sealed storage (“blobs”). While
this may work, it leads to very high resource utilization, thus
limiting its use on a sufficiently continuous basis. Further-
more, attestations become more time consuming as the num-
ber of extensions to the PCRs and the resulting attestation
chains grow. A method is needed to extend attestation to cope
with execution state mutation that does not require a signifi-
cant attestation compute burden.

[0328] We introduce a concept called “dynamic attesta-
tion” that extends the attestation model through the software
hierarchy from the BIOS to the application level while adher-

Aug. 13,2009

ing to the general “trust ratcheting” principal inherent in the
TCG based use of the PCRS. Encrypted, or sealed storage can
be utilized to extend the PCR model to each level in the
hierarchy, so that any and all levels, including applications,
can be verified independently from one-another. They can be
sealed against the entire ratchet chain beneath a particular
level, or just against the invariant component of that level. We
call these typically encrypted or sealed extensions of the PCR
ECRs (“Extended Configuration Registers”™).
[0329] Dynamic attestation operates at a finer granularity
that standard models and deals with mutating state using a
layered approach. This enables it to make the verification
process incremental and computationally less burdensome.
[0330] To achieve dynamic attestation, we make a distinc-
tion between invariant and modifiable state. Invariant state
information is useful in reducing the size of the verification
task. We also architect the system to leverage “packaged and
verified” software entities where possible to maximize sys-
tem robustness. This is a hard problem in practice, particu-
larly for the Windows environment, since it is difficult to
create cleanly packaged and verified software modules. We
note that VMs themselves, when first instantiated, are good
examples of such “packaged and verified” entities.
[0331] Important modifiable state areas to consider include
memory allocation/deallocation, the execution stacks, and
the registry.
[0332] The system designer can make distinctions among
modifiable state, including:
[0333] 1. The state, if modified, cannot result in mali-
cious behavior
[0334] 2. The state, if modified, can result in malicious

behavior—which can be dealt with by approaches such

as:

[0335] a.lgnoring it, knowing that malicious behavior
cannot extend to other VMs, relying on other isolation
mechanisms, or knowing the malicious behavior can-
not survive an attestable re-instantiation of the VM
environment and/or application

[0336] b. Encrypting the state

[0337] c. Constantly verifying correct behavior (be-
havioral monitoring)

[0338] The keys for encrypted state can be stored in the
TPM, encrypted and stored elsewhere in the system, or pref-
erably as sealed blobs that can be sealed against aspects of the
system, including the invariant state of the current software
level, or against the attestation state of the software stack up
to that level.

[0339] To minimize computation, the allocated memory
can be brought into and out of RAM in large chunks to
minimize encryption/decryption overhead. To reduce tam-
pering and memory/TLB attacks, the VMM should ensure
that those chunks are isolated in RAM.

[0340] Stack state is more challenging to protect. It is
unreasonable to expect that an application stack can be effec-
tively verified as a block of memory because specific aspects
of the stack are nondeterministic and contain information
such as specific hardware and memory addresses that will
change from system to system and even from execution to
execution within the same system. However portions of the
stack that are volatile still remain predictable such that,
“scrubbed” stack trace data, that is abstracted or simplified
representations of the stack, can be conditionally verified at
principle functional checkpoints. This provides protection
from certain types of semantec attacks such as library substi-

US 2009/0204964 Al

tutions and malicious plug-ins and components, since only
certain program execution flows are allowed through known
signed libraries, plug-ins, and components. Furthermore, the
ability for a program to support stack state validation need not
require explicit coding by the application. Since the nature of
the execution stack is to store the function or method call
history, a validation tool could link in bindings to validation
routines so thata PCR measurement may be extended accord-
ing to some scheme. This allows for the program to take
measurements and validate stack state at specified stack loca-
tions with no additional programming.

[0341] We briefly discuss each level in the software hierar-
chy:
[0342] BIOS: The BIOS is considered invariant. It is usu-

ally a RTMS (Root of Trust for Measurement). Access to the
BIOS is protected/controlled.

[0343] VMM: The VMM itself is readily attestable at any
time as it is invariant to change, except principally for some
state information associated with the VMs it is hosting, and
this state information can easily be protected as sealed storage
(blobs).

[0344] VM: VMs can be “packaged” as verifiable and
attestable state for instantiation, and in general all VM instan-
tiations can be realized as such.

[0345] Operating System: OS images can be “packaged” as
verifiable at attestable state for instantiation, and for certain
applications a “clean” OS image is appropriate. But in general
OS image state will mutate and one or more of the dynamic
attestation techniques mentioned above will be applied.
[0346] Application: Like OS images, application images
can be “packaged” as verifiable at attestable state for instan-
tiation, and in most instances a “clean” OS image is appro-
priate (with user preferences being the only state that typi-
cally mutates). In the cases where application image state will
mutate and one or more of the dynamic attestation techniques
mentioned above will be applied.

[0347] The foregoing discussion discloses and describes
merely exemplary methods and embodiments of the present
invention. As will be understood by those familiar with the
art, the invention may be embodied in other specific forms
without departing from the spirit or essential characteristics
thereof. Accordingly, the disclosure of the present invention
is intended to be illustrative, but not limiting, of the scope of
the invention, which is set forth in the following claims.

1. A trusted virtualization system comprising a trustworthy
mobile endpoint device, the mobile endpoint device compris-
ing:

acommunications module that provides a communications
link between the mobile endpoint device and a net-
worked infrastructure;

a host processor and memory;

a hardware based tamper-resistant module (hereafter, the
hardware root of trust or HROT), the HROT comprising:
secure non-volatile memory for storing integrity mea-

surement data and data related to keys,
a computational module;
a key pair generation module, and
a random number generator;

a trusted boot process executed by the host processor to
boot the mobile endpoint device into a known state, the
trusted boot process utilizing the HROT to provide cryp-
tographic resources and secure non-volatile memory to
verify the integrity of the mobile endpoint device;

Aug. 13,2009

an attestation process executed by the host processor to
attest to the integrity of the mobile endpoint device in
response to an attestation challenge, the attestation pro-
cess utilizing the HROT to provide integrity measure-
ments of the mobile endpoint device, said integrity mea-
surements verifying an integrity of a state of the mobile
endpoint device;

a Type-1 trusted virtual machine monitor (hereafter, the
Type-1 TMM) that executes on the host processor, the
trusted boot process including booting of the Type-1
TVMM and utilizing the HROT to verify the integrity of
the Type-1 TVMM, the Type-1 TVMM capable of host-
ing a plurality of virtual machines and virtualizing the
HROT independently for each such hosted virtual
machine.

2. The virtualization system of claim 1 wherein the attes-
tation process can attest to a specific virtual machine inde-
pendent of other virtual machines hosted by the mobile end-
point device, the attestation process utilizing the HROT to
provide integrity measurements of layers in the hardware and
software stack that are required for correct operation of the
specific virtual machine.

3. The virtualization system of claim 2 wherein the virtual
machines can host operating systems and the attestation pro-
cess can attest to a specific operating system independent of
other operating systems hosted by the mobile endpoint
device, the attestation process utilizing the HROT to provide
integrity measurements of layers in the hardware and soft-
ware stack that are required for correct operation of the spe-
cific operating system.

4. The virtualization system of claim 3 wherein the virtual
machines can host operating systems, the operating systems
can host applications, and the attestation process can attest to
a specific application independent of other applications
hosted on the mobile endpoint device, the attestation process
utilizing the HROT to provide integrity measurements of
layers in the hardware and software stack that are required for
correct operation of the specific application.

5. The virtualization system of claim 1 wherein the net-
worked infrastructure comprises an agent server communi-
cating with the mobile endpoint device over a communica-
tions channel that includes the communications link, the
agent server comprising:

a virtual machine monitor hosted by the agent server, the
virtual machine monitor capable of hosting virtual
machines on behalf of the mobile endpoint device.

6. The virtualization system of claim 5 wherein the agent

server further comprises:

a host processor and memory, the virtual machine monitor
executing on the host processor;

an HROT comprising:
secure non-volatile memory for storing integrity mea-

surement data and data related to keys,
a computational module,
a key pair generation module, and
a random number generator;

a trusted boot process executed by the host processor to
boot the server into a known state, the trusted boot pro-
cess utilizing the HROT to provide cryptographic
resources and secure non-volatile memory to verify the
integrity of the mobile endpoint device;

an attestation process executed by the host processor to
attest to an integrity of the server in response to an
attestation challenge received from the mobile endpoint

US 2009/0204964 Al

device, the attestation process utilizing the HROT to
provide integrity measurements of the server, said integ-
rity measurements verifying an integrity of a state of the
server; and

the virtual machine monitor capable of hosting a plurality

of virtual machines (including virtual machines hosted
onbehalfofthe mobile endpoint device) and virtualizing
the HROT independently for each such hosted virtual
machine.

7. The virtualization system of claim 6 wherein, on the
agent server, the attestation process can attest to a specific
virtual machine hosted on behalf of the mobile endpoint
device independent of other virtual machines hosted by the
agent server, the attestation process utilizing the HROT to
provide integrity measurements of layers in the hardware and
software stack that are required for correct operation of the
specific virtual machine.

8. The virtualization system of claim 6 wherein, on the
agent server, the virtual machines can host operating systems
and the attestation process can attest to an operating system
hosted on the virtual machine hosted on behalf of the mobile
endpoint device independent of other operating systems
hosted by the agent server, the attestation process utilizing the
HROT to provide integrity measurements of layers in the
hardware and software stack that are required for correct
operation of said operating system.

9. The virtualization system of claim 6 wherein, on the
agent server, the virtual machines can host operating systems,
the operating systems can host applications, and the attesta-
tion process can attest to a specific application hosted on the
virtual machine on behalf of the mobile endpoint device
independent of other applications hosted on the agent server,
the attestation process utilizing the HROT to provide integrity
measurements of layers in the hardware and software stack
that are required for correct operation of the specific applica-
tion.

10. The virtualization system of claim 5 wherein the
mobile endpoint device can spawn virtual machines hosted by
the agent server.

11. The virtualization system of claim 10 wherein the agent
server can spawn virtual machines hosted by the mobile end-
point device.

12. The virtualization system of claim 11 wherein the agent
server can stipulate a set of policies through the virtual
machines spawned by the agent server on the mobile endpoint
device.

13. The virtualization system of claim 10 wherein the
mobile endpoint device can spawn agent applications hosted
by virtual machines hosted by the agent server.

14. The virtualization system of claim 13 wherein the agent
application is an anti-malware application that scans data
prior to said data being transferred to the mobile endpoint
device.

15. The virtualization system of claim 13 wherein the agent
application is a behavioral monitoring agent that receives
signatures from the mobile endpoint device of the execution
behavior of the mobile endpoint device and uses said signa-
tures to determine a health state of the mobile endpoint
device.

16. The virtualization system of claim 13 wherein the agent
application is a web browsing anonymization agent that
assists the mobile endpoint device to retain anonymity while
the mobile endpoint device browses the web.

19

Aug. 13,2009

17.The virtualization system of claim 13 wherein the agent
application is a P2P proxy for a P2P client application, where
the P2P client functionality is partitioned between the mobile
endpoint device and the P2P proxy, the P2P proxy supporting
upstream forwarding bandwidth requirements of a P2P net-
work, said P2P proxy forwarding P2P downstream data to the
mobile endpoint device and forwarding P2P upstream data to
requesting peers in a P2P swarm.

18. The virtualization system of claim 13 wherein the agent
application is a web filtering content agent that removes
unwanted web page content before the web page is transmit-
ted to the mobile endpoint device.

19. The virtualization system of claim 13 wherein the agent
application is a data compression agent that compresses data
before transmission to the mobile endpoint device.

20. The virtualization system of claim 13 wherein the agent
application is a data storage agent that manages web based
data storage for the mobile endpoint device.

21. The virtualization system of claim 13 wherein the agent
application is a transaction proxy that is authorized to act on
behalf of the mobile endpoint device to manage transactions.

22. The virtualization system of claim 13 wherein the agent
application is a communications channel virtualization agent
that coordinates a virtualization of multiple communications
channels between the mobile endpoint device and the agent
server into a single virtual communications channel.

23. The virtualization system of claim 13 wherein the agent
application is a single sign-on agent that serves as a web
identity broker to manage various user web identities and
authentication information to create a personal secure virtual
web SSO (Single Sign On) service.

24. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on contextual
awareness of the state of the mobile endpoint device.

25. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on a bandwidth of
the communications channel between the mobile endpoint
device and the agent server.

26. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on a latency of the
communications channel between the mobile endpoint
device and the agent server.

27. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on a usage cost of
the communications channel between the mobile endpoint
device and the agent server.

28. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on an energy status
of the mobile endpoint device and/or energy use cost of the
agent application.

29. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on memory avail-
ability on the mobile endpoint device.

30. The virtualization system of claim 13 wherein the agent
application adjusts its functionality based on a past location
and/or time of past location of the mobile endpoint device and
also based on current location and current state of the mobile
endpoint device.

31. The virtualization system of claim 10 wherein the
mobile endpoint device can stipulate a set of policies through
the virtual machines spawned by the mobile endpoint device
on the agent server.

32. The virtualization system of claim 31 wherein the set of
policies includes a policy on permissible I/O modalities.

US 2009/0204964 Al

33. The virtualization system of claim 31 wherein the set of
policies includes a policy on which URLSs or web sites may be
accessed by the mobile endpoint device.

34. The virtualization system of claim 31 wherein the set of
policies includes a policy on permissible applications.

35. The virtualization system of claim 31 wherein the set of
policies includes a policy on when and/or where certain appli-
cations may be executed.

36. The virtualization system of claim 5 wherein the
mobile endpoint device has a capability to clone a virtual
machine hosted by the Type-1 TVMM and also operating
system(s) and application(s) hosted on the virtual machine,
and the mobile endpoint device further has a capability to
transfer the clone to the agent server as an executable template
for execution on behalf of the mobile endpoint device.

37. The virtualization system of claim 36 wherein the
executable template further includes integrity measurements
of'the cloned virtual machine, operating system(s) and appli-
cation(s).

38. The virtualization system of claim 5 wherein the
mobile endpoint device has a capability to clone a virtual
machine hosted by the Type-1 TVMM and also operating
system(s) and application(s) hosted on the virtual machine,
and the mobile endpoint device further has a capability to
transfer the clone to the agent server as a honeypot clone to
test software or content destined for the mobile endpoint
device for malware or malicious behavior before said soft-
ware or content is transferred to the mobile endpoint device.

39. The virtualization system of claim 1 wherein a past
location history and/or times of past locations of the mobile
endpoint device is used as a factor in a multi-factor user
authentication process.

40. The virtualization system of claim 1 wherein the
Type-1 TVMM collects aggregate meta-data that cannot be
associated with any particular virtual machine, the meta-data
characterizing a behavior and/or performance of virtualized
resources used by the mobile endpoint device, the meta-data
available to the virtual machines hosted by the Type-1
TVMM and to applications hosted by said virtual machines.

41. The virtualization system of claim 1 wherein the
mobile endpoint device further comprises:

a display framebuffer, a portion of which is controlled by
the Type-1 TVMM to indicate a trust level of the mobile
endpoint device.

42. The virtualization system of claim 41 wherein the

mobile endpoint device further comprises:

a multi-windowed environment, wherein the Type-1
TVMM can lock down a cursor and keyboard focus to a
specific window.

43. The virtualization system of claim 41 wherein the por-
tion of the display framebuffer controlled by the Type-1
TVMM further indicates a trust level of a virtual component
executing on an agent server in the networked infrastructure
on behalf of the mobile endpoint device.

44. The virtualization system of claim 1 wherein the com-
munications link is a wireless communications link.

45. The virtualization system of claim 1 wherein the net-
worked infrastructure includes the Internet.

46. A mobile trust module comprising:

a first standard connector for connecting the mobile trust

module to a mobile endpoint device;

a hardware based tamper-resistant module (hereafter, the
hardware root of trust or HROT), the HROT comprising:

Aug. 13,2009

secure non-volatile memory for storing integrity mea-
surement data and data related to keys,

a computational module,

a key pair generation module,

a random number generator;

a trusted boot process that boots the mobile endpoint
device into a known state, the trusted boot process uti-
lizing the HROT to provide cryptographic resources and
secure non-volatile memory to verify the integrity of the
mobile endpoint device;

an attestation process to attest to an integrity of the mobile
endpoint device in response to an attestation challenge
received by the mobile endpoint device, the attestation
process utilizing the HROT to provide integrity mea-
surements of the mobile endpoint device, said integrity
measurements verifying an integrity of a state of the
mobile endpoint device;

a Type-1 trusted virtual machine monitor (hereafter, the
Type-1 TVMM), the trusted boot process including
booting of the Type-1 TVMM onto the mobile endpoint
device and utilizing the HROT to verify an integrity of
the Type-1 TVMM, the Type-1 TVMM capable of host-
ing a plurality of virtual machines and virtualizing the
HROT independently for each such hosted virtual
machine.

47. The mobile trust module of claim 46 wherein the first

standard connector is a USB connector.

48. The mobile trust module of claim 46 wherein the first
standard connector is a Secure Digital (SD) connector.

49. The mobile trust module of claim 46 wherein the first
standard connector is an SDIO connector.

50. The mobile trust module of claim 46 wherein the first
standard connector is a MiniSD connector.

51. The mobile trust module of claim 46 wherein the first
standard connector is a MicroSD connector.

52. The mobile trust module of claim 46 further compris-
ing:

a second standard connector of a same type but opposite
polarity as the first standard connector, allowing pass
through of signals from the second standard connector to
the first standard connector.

53. The mobile trust module of claim 46 further compris-

ing:

a physical user control, activation of which initiates the
trusted boot process.

54. The mobile trust module of claim 46 further compris-

ing:

a human perceptible indicator that indicates a trust level of
the mobile endpoint device.

55. The mobile trust module of claim 54 wherein the
human perceptible indicator indicates whether the trusted
boot process and/or verification of integrity of the state of the
mobile endpoint device has been successfully completed.

56. The mobile trust module of claim 54 wherein the
human perceptible indicator indicates when the trusted boot
process and/or verification of integrity of the state of the
mobile endpoint device is in process.

57. The mobile trust module of claim 54 wherein the
human perceptible indicator indicates whether the trusted
boot process and/or verification of integrity of the state of the
mobile endpoint device has failed or has not been initiated.

58. The mobile trust module of claim 46 wherein, prior to
initiation of the trusted boot process from the mobile trust

US 2009/0204964 Al Aug. 13,2009

21
module onto the mobile endpoint device, a current state of the trusted boot process from the mobile trust module onto
mobile endpoint device is stored for possible later restoration. the mobile endpoint device.
59. The mobile trust module of claim 46 further compris- 60. The mobile trust module of claim 46 wherein the HROT
ing: further comprises a real-time clock.

anti-malware software that performs an anti-malware scan
of the mobile endpoint device prior to initiation of the ok ow R

Patent Application Publication Aug. 13, 2009 Sheet 9 of 12 US 2009/0204964 A1

MIEP : g g
i 2)
dir PiC
Web Server App Server Data| " —=
Management VM| & t| |Management VM| & Sve | ciore
| |[I_Mgmtsve |g| | Hl_ MomtSve]|s '
e |F : F
@ .
21 8|l Trusted Agent VM |S| | i | [Trusted AgentVM |=
AL gy 18IS ELiT v —lalS|E
oIl Virtual Service ||1O(S| S -E“*I Virtual Service ||19/S1 o
< Q|| || Trusted || Trusted || £| o 3(:_3 2| || Trusted || Trusted || 2| o| -
E ® Agent Agent s g Q. E Agent Agent .,:..%,. Q.]
;|3 HEIE e
: Untrusted Agent VM 8 w{ Tl |Untrusted Agent VM 8 wn|T
3 17ll_Open Service 1% -r->| Open Service |ig
il ||[Open Service HE -4/ Open Service |+& .
: 8 : 3
MIEP Service Site)
i3 Web Server | i 5[App Server || pata| ==
10 B i 9 ‘ . || |Servery | Data
s % % MgmtVM || i F g Mgmt VM Store
. = > : >
| i |@lllg) Open L Iy, Open ——
; B3 Service VM| | : ‘g Service VM —
B P3| |[8] virtual |(Gntol @1 Virtual
: 7| |Service VM|| : ® Service VM
H — H T I
: (2)7 . Imagd(@) Datq 55
: | : 4
: { : Master VM Servér
= @ i —
: : : s App Server S——=
: | H VM Image
.. | Data = E
: | : Web Server
: Ilmage ____o-od VMImage e’
: § Management
: : VM J

FIG. 18

Patent Application Publication Aug. 13, 2009 Sheet 10 of 12 US 2009/0204964 A1

Server

VM Agent

Other Peer User User
Generated Generated Generated
Upstream Upstream Downstream

Traffic Traffic Traffic

Internet Cloud

User User
Generated Generated
Upstream Downstream
Traffic Traffic
P2P
Client

FIG. 19

Internet Cloud

Other Peer User User
Generated Generated Generated
Upstream Upstream Downstream

Traffic Traffic Traffic
VM Agent Server
User ‘ User
Generated Generated
Upstream Downstream
Traffic Traffic
P2P
Client

FIG. 20

Patent Application Publication Aug. 13, 2009 Sheet 11 of 12 US 2009/0204964 A1

Untrusted Trusted Trusted
M M Cellular VM
‘ P Link > Trusted User Agent:
> SSLVPN " Vius Scan
- Anti-SPAM .
- surfing proxy
. BT - etc
Cannot WiFi
Compromise UsB
TVMM TVMM
Core Root of Trust Access Blocked Core Root of Trust
via Policy
MIEP Trusted Server
¢ EK_PUB

4—— EK_PUB_CERT
+——PCA_PUB
“—— PCA_PRIV

PCA_PUB— .
EK_PUB_CERT— MIEP PCA

AlK_‘PUB, JR——————— ENCPCA pUB(AIK__PUB,
AIK_PRIV EK PUB CERT)

¢—— DECpcp priv(AIK_PUB,
EK_PUB_CERT)

—— Verify(EK_PUB_CERT)
ENCEK_PUS (SIGPCA_PUB
(AIK PUB))

FIG. 22

Patent Application Publication Aug. 13, 2009 Sheet 12 of 12 US 2009/0204964 A1

PCA_PUB——)
AIK_PUB_CERT—»|
EK_PUB_CERT—»

EK_PUB, EK_PRIV ——— «—— AIK_PUB
AIK_PRIV, AIK_PRIV—>] MIEP Run SA Reatest Challengerl, och pug
TPM ’ un eques
Load SA—»
le—— PCR’ <- SHA(SHA(SA) || WCR)
SA PUB SA_PUB
T SAPRWV CERT SA
SIG,k_priv(SA_PUB,PCR,CTR)
SML Entries
(CERT_SA)
l«—— Compute_PCR
Run SA——— Challenge SA _R (SML_Entries)
S’GQA”DRJJ d R!)
, ¢— VERIFYg, pus(R)
Terminate SA Challenge MIEP -
CERT MIEP
SIG,K priv(PCR',PCR,CTR)
SML Entries :
¢ VERIFYpp ax
(CERT_MIEP)
«— Compute_PCR

FIG. 23 (SML_Entries)

Patent Application Publication Aug. 13, 2009 Sheet 1 of 12 US 2009/0204964 A1

Application Application
#1 #2

oS

Kernel Code, /O

Boot Firmware

FIG. 1 (prior art)

Application Application
#1 #2

0S

Kernel Code, /O

RootKit Code

Boot Firmware

FIG. 2 (prior art)

Patent Application Publication Aug. 13, 2009 Sheet 2 of 12 US 2009/0204964 A1

Service Site 1
] . T
: & [Web Server— Application Data
Browsers E‘_’§ % /.é‘ Server [} Server Data
: 3 T E
i 3 | Web Server : % : tRepIication
il 8 : : if [Application | | Data | sz
+— S HWeb Server— Server || Server m
HE . : are
Cell Phones/ s
PDAS I | Replication
. Service Site 2
9 % bWeb Server Application | | Data S
H __‘_é“’ Q : Server Server m
H © ¥ = Store
- é = Web S'erver % : tReplication
pp servers il § : :if [Application | [Data | o=
+— 3 biweb Server|— Server || Server m
: : ore

- FIG. 3 (prior art)

. Platform Attestation
Nosrlt;\:::etne Configuration Identity Key Pg)g(;aem
Register (PCR) (AIK)

= | II III

Random
SHA-1 RSA Exec
Number Enai Key. \ Opt-in Enain
gine| |Generation | |Engine gine

Generator

Trusted Platform Module (TPM)

Packaging

FIG. 4 (prior art)

Patent Application Publication Aug. 13, 2009 Sheet 3 of 12 US 2009/0204964 A1

oS *+> 20
L & Run 2
g > 13
3
Measure 1
TPM
) { 1 *> 5
Kernel W
V=T
9
W \KA
Boot Code ./m)/ \t\&‘
d & Run % o
CRTM
(in RIOQ)
VM1 VM2
Guest 0OS-2 Guest 0S-1 Data storage
Web Services / Applications Web Services / Applicationst{T
-------- PE ettt [R5 |
1 SN
Crypto Services: PHCS#H Crypto Services: PKCS#11 Sealed Data
1
Containers bound to
T
TSS. : TSS . platform/TPM
vIPM driver’ = (_ vTPM driver

ol '
;
: . TPM virtualization manager
Trusted Hypervisor ;t“\ t: 9
TPM nati driver
Kernel LLoader [TCG code | Il

Boot Manager [Tcode TPM AP| :
v Boot firmware I lee
(RedBoot) [TCGcode | ITPMI |y | 5 o
CRTM 2TPM
CPU Init code] =0

FIG. 6

Patent Application Publication Aug. 13, 2009 Sheet 4 of 12 US 2009/0204964 A1
(Super) VM-0 VM-1 VM-n
Management Applications Applications
Services Layer ~ Layer
Trusted Linux Trusted WIinCE
ATL ATL ATL h
CSP CSP CSP
= =) P ~Layer-4
TDDL TDDL _TDDL J (MPS)
L Vi il| TPM Driver TPM Driver
4L X ~ Layer-3
PME| FE-TPMD PME| FE-TPMD
I 'y = - ~
. L TTIIIIIIIIIIIIT . H
5 VMM (TVMM) Layer-2
)
! Boot Firmware + Boot Manager Layer-1
¥
@ Hardware Layer-0
FIG. 7
jm———- Single Virtual Broadband Pipe . _ _ _

GSM
Carrier

“Cloud”

- ——————— — - —— - -

Internet

Web
ervic

Web
Service

Patent Application Publication Aug. 13, 2009 Sheet 5 of 12 US 2009/0204964 A1

Host Mobile Device

MTM
|
UsB Memory Stick| |] [] Intetace
FLASH ‘
frem]
FIG. 9

Host Mobile Device

Appl App!
USB | "4 #2

: 0s

Kernel Code, I/O
VMM

N

USB Memory Stick :1 :3

Patent Application Publication

BT

Aug. 13,2009 Sheet 6 of 12

oat Mobils Devine

US 2009/0204964 A1

UES Memoryl § %

e
bﬁ”s

FiG. 11

,ﬂ»/'“ O "FrustBa®

Chaplan ey

’é“?;}gi{,aﬁiw e
Launch kon

;
t2)
% ¢
3 <
L ;
« s
‘ .
“ <
H 3
:
Trusiad
P eyt 5 <
Agplication

Troming Vi

FiG. 12

Heoure
o)

Linfrusted ¥

Patent Application Publication Aug. 13, 2009 Sheet 7 of 12 US 2009/0204964 A1

Virtual Service

Patent Application Publication Aug. 13, 2009 Sheet 8 of 12 US 2009/0204964 A1

MIEP '3 '3
P 8 P8
P Hiv
Web Server App Server Data Data
Management VM| & 1| |Management VM| & SVe |l siore
;0 Il _MgmtSve ig| | M]__MgmtSve J|£
Ll m L]
1|8 :
~HE Tru§ted Agen.t VMw 3 Tru§ted Agen't VMm £
sP_Virtual Service ||9|<| 8 = _Virtual Service ||© =|8
: g Trusted || Trusted || £|S| 5|5] || Trusted | Trusted || £| S| & —
18|l agent || agent [|7[Z1e2l | Agent || Agent |7 2| &
ok ek IS
: Untrusted Agent VM | 8| | T|[3] | Untrusted Agent v |G| | T
i+l Open Service }‘% -4{| Open Service I—%
:| ||[Open Service HE -] Open Service |I&)
: 3 : 3
MIEP Virtual Service
Epfﬂ § Management Management VM | _,
S M 1 Mgmt Service | >
£ Z |8 Trusted WM [[Root Service | | .
s £ |[_Secure App
z P IE]\O Cloud Trusted Service VM| _ | 2 E
- T
% S| OpenvM TLS Je—{| Virtual Service | AR
g Trusted | |Trusted 2 g
é Open App Agent | | Agent @ 3
g =
© Open VM g
{| Open Service | g
£
o)
[}

FIG. 16

dbei05 poees bW.LW:]l]

	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	Binder2.pdf
	10
	11
	12
	13
	2
	3
	4
	5
	6
	7
	8
	9

